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ABSTRACT
Recent non-volatile memory (NVM) technologies, such as
PCM, STT-MRAM and ReRAM, can act as both main
memory and storage. This has led to research into NVM pro-
gramming models, where persistent data structures remain
in memory and are accessed directly through CPU loads
and stores. Existing mechanisms for transactional updates
are not appropriate in such a setting as they are optimized
for block-based storage. We present REWIND, a user-
mode library approach to managing transactional updates
directly from user code written in an imperative general-
purpose language. REWIND relies on a custom persistent
in-memory data structure for the log that supports recover-
able operations on itself. The scheme also employs a combi-
nation of non-temporal updates, persistent memory fences,
and lightweight logging. Experimental results on synthetic
transactional workloads and TPC-C show the overhead of
REWIND compared to its non-recoverable equivalent to be
within a factor of only 1.5 and 1.39 respectively. More-
over, REWIND outperforms state-of-the-art approaches for
data structure recoverability as well as general purpose and
NVM-aware DBMS-based recovery schemes by up to two
orders of magnitude.

1. INTRODUCTION
Non-volatile memory (NVM) technologies, such as PCM,

STT-MRAM and ReRAM, raise the prospect of persistent
byte-addressable random access memory with large enough
capacity to double as storage. By itself this would allow ap-
plications to store their persistent data in main memory by
mounting a portion of the file system to it. This introduces
NVM into the data management programming stack, but in
a far from ideal manner. Consider a typical multi-tier ap-
plication: the programmer decides on the application-level
control and data structures, and then decides on the storage-
level persistent representation of the data structures. Spe-
cialized APIs (e.g., embedded SQL, JDBC, etc.) translate
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data between the two runtimes using SQL as the intermedi-
ate language, in a cumbersome and sometimes error-prone
process. Moreover, data may be replicated in both DRAM
and NVM, while the byte-addressability of NVM is not lever-
aged. Clearly, this is suboptimal. An alternative is to port
an in-memory database system to persistent memory. That
would make use of byte addressability, but it would still re-
quire data be replicated and represented in two data models.
We argue that we need a solution that is not intrusive to the
programmer and seamlessly integrates the application’s data
structures with their persistent representation.

We target use-cases where the data owner has full control
of the data, foresees little change to the schema, and would
like to tightly co-design the schema with the operations for
performance. These use-cases capture a large group of con-
temporary applications. Indeed, persistence APIs are being
used across a variety of operating systems [1, 18]. These
platforms support either a persistent storage manager [22] or
an embedded database [16]. Our stance is that in such sce-
narios we are better off integrating the storage manager and
the application memory spaces. By doing so we enable the
use of arbitrary persistent data structures in a lightweight
software stack that significantly reduces the cost of man-
aging data [15, 27]. To address these issues we introduce
REWIND: a user-mode library that enables transactional
recoverability of an arbitrary set of persistent updates to
main memory data. The runtime system of REWIND trans-
parently manages a log of program updates to the critical
data and handles both commit and recovery of transactions.
By tracking the operations of the transactions that commit
the runtime can identify the point of failure and can resume
operation relying on the consistency of critical data.

Our work stems from an alternative persistent memory
access model that has gained interest recently: directly
programming with persistent memory through mechanisms
such as persistent regions [14] or persistent heaps [5, 31].
Persistent data is accessed directly by the processor with a
load-store interface and with (mostly) automatic persistence
without interacting with the I/O software stack. This model
is highly disruptive as it enables a new class of data manage-
ment systems in which both user data and database meta-
data are managed entirely in memory as one would manage
volatile data [29]. Thus, some fundamental assumptions on
programming interfaces and software architecture need to
be revised as persistent data needs to be directly managed
by the programmer’s code using imperative languages.

The programmer-visible API of REWIND offers two main
functionalities: one to demarcate the beginning and end of
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transactions and one to log updates to critical data. Our
intention is to completely do away with the second function-
ality by relying on compiler support so that the programmer
only needs to identify the critical data. The key challenge of
using persistent in-memory data structures is guaranteeing
consistent data updates in the presence of system failures
(e.g., power failures and system crashes). This differs from
transactional memory where the main intention is to deal op-
timistically only with atomicity and isolation. It also differs
from non-recoverable device failure as this is an orthogonal
issue and is hardware-related; we only target failures due
to system and software malfunctions. REWIND provides
full atomicity and durability for persistent memory through
write-ahead logging. While the principles of the mechanism
are still applicable to persistent memory, its implementation
and tradeoffs must be revisited given the significant differ-
ences in access latencies and synchronization control (see,
e.g., [10, 12]). Thus, REWIND overcomes a number of chal-
lenges that arise in this new context.

First, the processing model is that persistent data is on
byte-addressable NVM, accessible directly from user code
through CPU loads and stores.1 Traditionally, data updates
are first performed in volatile memory. It is thus possible
to delay making log entries persistent until the transaction
commits or the data updates are purged from main memory.
In REWIND, updates are done directly on NVM data: the
log entries must be made persistent immediately, and ahead
of the data updates. We achieve this through enhanced ver-
sions of memory fences (i.e., barriers that enforce ordering
and persistence to preceding instructions), cacheline flushes
and non-temporal stores (i.e., direct to NVM stores that
bypass the cache) with persistence guarantees.

REWIND uses physical logging as it fits better with im-
perative languages and allows easier compiler support. How-
ever, it might result in more log records than logical/phys-
iological logging when memory blocks are shifted in mem-
ory. Then, the log itself must be manipulated atomically in
a recoverable way. Traditionally, the log is maintained in
volatile memory and pushed to persistent storage through
system calls. In REWIND, the log itself resides in persis-
tent main memory and updates are made in-place. Trans-
actional handling of failure of log updates is attained with
carefully crafted data structures and code sequences. Fur-
thermore, performance is relative to a baseline with the low
cost of individual memory operations. Thus, logging must
be optimized to incur only a small increase in the cost of
a memory operation. In REWIND, we guarantee this with
minimalist data structures and code sequences. Moreover,
while contemporary systems offer record level locking from a
data-centric perspective, they use coarse-grained page-level
latching internally. REWIND employs fine-grained latch-
ing at a log record granularity: this enables more efficient
and flexible locking mechanisms. Finally, the majority of
recovery managers based on ARIES [20] are implemented
within DBMSs. Thus, they hide data management behind
some data model (e.g., relational) and allow data manip-
ulation through a well-defined query language (e.g., SQL).
REWIND is implemented as a user-mode library that can be
linked to any native application, giving the programmer full

1NAND-based battery-backed NV-DIMMs already sup-
port this (see also http://www.smartstoragesys.com/
pdfs/ULLtraDIMM_overview.pdf). Newer technologies will
bring more practical implementations.
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Figure 1: Transactional access to application data.

access to the data using an arbitrary sequence of imperative
commands. Moreover, the design of REWIND itself is such
that it can be straightforwardly embedded into the compiler
so that the disruption to user code is further minimized.

Contributions and organization Our contributions and
the structure of the rest of this paper are as follows:
• We introduce REWIND, a user-mode library for log-

ging and transaction management in NVM.
• We explore the design space of REWIND (Section 2)

via four configurations that result from choosing be-
tween: (a) two different log implementations opti-
mized for minimizing either logging overhead or search
speed; and (b) forcing or not user data to non-temporal
stores.
• We describe two ways to implement the log completely

in persistent memory, so it is recoverable and atomic
as well. We then present two optimized log versions
that further reduce the write overhead (Section 3).
• By leveraging the recoverable log we show how to

enable in-memory persistent data structures. We
present how these new mechanisms can be incor-
porated into imperative general-purpose languages
through the REWIND library and runtime (Section 4).
• We analyze the sensitivity of REWIND to its param-

eters and show how it can be configured to deliver
low-overhead transactional processing and recoverabil-
ity of data structures in NVM. We compare REWIND
to state-of-the-art recovery managers as well as to
traditional and NVM-aware DBMS-based techniques.
REWIND’s overhead is within a factor of 1.5× from its
non-recoverable counterpart, while it outperforms the
competition by up to two orders of magnitude (Sec-
tions 5.1 and 5.2).
• We use a modified version of TPC-C to show how

REWIND enables the co-design of algorithms and data
structures. Workload- and program-specific optimiza-
tions result in a REWIND performance within a factor
of 1.3× from its non-recoverable version (Section 5.3).

Finally, we present related work in Section 6 and conclude
and identify future work directions in Section 7.

2. SYSTEM OVERVIEW
REWIND is a user-mode recovery runtime system that

can be used by programmers and compilers to provide
atomic recoverability to arbitrary code that operates on per-
sistent data structures in NVM. We envision the REWIND
library being statically linked with executables, but other
variations such as dynamic linking or a shared library could
also be developed. Thus, REWIND can be used then as a
standalone recovery manager for individual applications, or
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Scheme Pros Cons

Transactional FS
• portability • programmability
• scalability • flexibility

DBMS
• robustness • initial perf. cost
• scalability • flexibility

REWIND
• programmability • disruptive model
• initial perf. cost

Table 1: Pros and cons of the options of Figure 1.

could be used as the building block of a larger, multi-user
data management system. We view REWIND as a funda-
mental building block towards introducing persistence at the
system level, especially when data outlives applications.

In Figure 1 we show the options available for transac-
tional data management. The application can interface with
a DBMS (Application C), or with a file system that offers
transactional access to user data (Application B) [7, 28].
The library approach of REWIND (Application A) operates
directly on data stored in NVM. This requires an NVM-
aware memory manager in the OS [5, 31]. Table 1 summa-
rizes the high-level pros and cons of each option. The use
of a file system leads to portable data formats, but suffers
in terms of programmability and flexibility by expecting the
programmer to manage both an in-memory and a serialized
on-disk version of the data. The DBMS is a tried approach,
but limits flexibility by imposing a data model and query
API, and suffers from the overheads of a client-server ar-
chitecture and a highly complex server. REWIND offers
increased programmability by enabling in-memory persis-
tent data structures and APIs as well as the low overhead
of a user-mode library. REWIND currently targets individ-
ual applications and may require additional functionality for
operation in multi-user environments. It provides, however,
a critical mechanism to enable this new class of data man-
agement in NVM. Others have also argued for supporting
a variety of storage models and infrastructures to meet the
demands of different workloads (e.g., [27]).

The core of REWIND is a transactional recovery protocol
based on WAL (Write-Ahead Logging). Unlike the ARIES
implementations of DBMSs, REWIND provides program-
mers with direct control of what updates should be trans-
actional through a simple API with a construct to mark
transactions and a function call to the log operation. Log-
ging calls are currently inserted manually by the program-
mer, but we expect them to be inserted transparently by the
compiler, similarly to how Software Transactional Memory
(STM) compilers work [11, 32]. Listing 1 is a function to re-
move an element from a doubly-linked list with the state of
the list updated through CPU writes (lines 3 to 6). To make
the operation recoverable, we enclose the critical updates in
a persistent atomic block.

1 void remove (node* n) {
2 persistent atomic {
3 if (n == tail) tail = n->prv;
4 if (n == head) head = n->nxt;
5 if (n->prv) n->prv ->nxt = n->nxt;
6 if (n->nxt)n->nxt ->prv = n->prv;
7 delete (n); } } // end of atomic block

Listing 1: Removal from a doubly-linked list.

To provide programmers with the familiar access interface
of current main memory data, we are restricted to physi-
cal logging and in-place updates. This differs from tradi-

tional disk-based systems where we are free to use logical
logs or delay forcing user updates to improve performance.
As REWIND is based on write-ahead logging, all updates
to persistent data must be preceded by a call to the log
function. This separates data from the log as the data are
handled by the user program while the log is handled by
REWIND. The resulting code, as expanded by the program-
mer or compiler, is shown in Listing 2. The runtime’s trans-
action manager is called at the start of the block (line 2) to
create a new transaction identifier: transaction management
is transparent to the programmer and compiler. Logging
calls (e.g., line 4) precede every critical update (e.g., line 5).
Logging call parameters include the transaction identifier,
the address of the memory location being updated, and the
previous and new values2. At the end of the expanded code
the commit call marks the end of the persistent atomic block.
The de-allocation of the memory occupied by the removed
node must be placed after transaction commit (line 16):
without additional OS support, de-allocating memory is an
operation that cannot be undone by REWIND.

1 void remove (node* n) {
2 int tID = tm->getNextID ();
3 if (n == tail) {
4 tm->log(tID , &tail , tail , n->prv);
5 tail = n->prv; }
6 if (n == head) {
7 tm->log(tID , &head , head , n->nxt);
8 head = n->nxt; }
9 if (n->prv) {

10 tm->log(tID , &n->prv ->nxt , n->prv ->nxt , n->nxt);
11 n->prv ->nxt = n->nxt; }
12 if (n->nxt) {
13 tm->log(tID , &n->nxt ->prv , n->nxt ->prv , n->prv);
14 n->nxt ->prv = n->prv; }
15 tm->commit(tID);
16 delete (n); }

Listing 2: Expanded code for Listing 1.

We propose and evaluate four configurations of logging
and transaction management in REWIND through deciding:
(a) whether or not to force user updates to NVM as they
happen; and (b) the number of logging layers to employ (one
or two). Each configuration comes with its own tradeoffs.

Forcing/not forcing user updates A force policy slows
down logging due to the extra time needed to guarantee
the persistence of the update. However, it only requires
a two-phase recovery (analysis and undo) instead of the
three-phase recovery (analysis, redo, and undo) of the no-
force policy. Thus, the tradeoff is faster recovery over a
slight slowdown during logging. The force policy also al-
lows (without dictating, however) an alternative log clear-
ing method instead of checkpoints. Each transaction can
clear its own records immediately after commit, resulting in
slower commits but eliminating checkpoints. Log clearing
becomes more expensive as the number of concurrent trans-
actions attempting to commit grows through increased lock-
ing congestion: clearing requires coarser-grained locks than
adding records as it invalidates the iterators of concurrent
threads. However, it utilizes memory better: memory is de-
allocated right after commit and not after the checkpoint. It
also minimizes the size of the log, which improves the time
to find records of a transaction. In our implementation we
combine the force policy with log clearing at commit-time.

2By address of a location we mean a persistent virtual ad-
dress, e.g., that offered by [31], a relative address, or some
other form of persistent reference to the memory location.
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Number of logging layers The logging infrastructure
and the recovery manager offer two configurations of the log
data structure. In its simplest form the log is a specially
crafted recoverable persistent doubly-linked list. Alterna-
tively, the log data structure is organized in two layers: an
auxiliary data structure (an AVL tree) at the top layer, over
the recoverable persistent doubly-linked list. Thus, the re-
covery manager caters for the recovery of up to three el-
ements: programmer transaction, an optional complex log
structure, and a fundamental and simple data structure. Re-
covery starts by recovering the simple data structure to a
consistent state, whose contents are then used to recover
the auxiliary log structure, if there is one. The contents
of both primary and auxiliary log structures are used to re-
cover the updates of the programmer transaction. The main
tradeoff between these two variants is that logging is faster
in the one-layer case but the two-layer log structure offers
faster search which benefits rolling transactions back.

3. THE RECOVERABLE LOG
3.1 Design overview

In NVM, the log is itself an in-memory non-volatile data
structure and log updates require a series of CPU writes.
Thus, updates for logging and recovering user updates must
themselves be logged and recoverable. The challenge is
to ensure atomicity and durability for log updates using
a recovery mechanism. Note that user updates are now
much cheaper, which makes traditional logging infrastruc-
ture heavyweight and calls for a low overhead design.

DBMSs often use auxiliary data structures for indexing
the log. Updating such structures may require a variable
number of updates due to the need to re-organize the data
structure. This makes maintaining transactional atomicity
difficult in NVM. Our solution is to create a specialized data
structure that embeds transactional logic and is able to re-
cover itself in the case of a system failure. The data structure
requires a constant number of operations to insert or remove
an entry, so that its state can be tracked with only a few vari-
ables that can be updated and made persistent in a single,
atomic, CPU write. This relies on only the last operation
in the basic structure being pending, so we only need to log
one operation. We also require the append/remove opera-
tions to be thread-safe. We force all updates on the basic
data structure to be performed directly on NVM through:
memory fences to force pending writes; non-temporal, syn-
chronous, writes that bypass the cache and do not complete
before reaching NVM; and cacheline flushes. All primitives
are present in most instruction sets today, but they guar-
antee only write visibility within the memory consistency
model of the machine; they do not guarantee persistence.
We assume that when NVM systems become widely avail-
able they will be capable to also guarantee persistence to
NVM. Most work on persistent data structures for NVM
makes similar assumptions (e.g., [5, 10, 12, 31]).

Based on these requirements we use a doubly-linked list
as the basic log data structure. List nodes contain the log
records, which contain information also found in ARIES,
e.g., a transaction identifier and the old and new values of
the affected memory location, etc. With carefully crafted
code it is possible to make atomic node insertions and dele-
tions over the linked list. This Atomic Doubly-Linked List
(ADLL) is the key data structure for logging user updates.

However, it requires linear search to locate an entry. An al-
ternative is to index log records by transaction identifier and
use the ADLL to log the pending updates to the index. The
result is a two-layer configuration where the index (an AVL
tree in our case) logs pending user updates and the basic
data structure (i.e., the ADLL) logs pending REWIND up-
dates to the complex data structure. The one-layer configu-
ration offers faster logging but may lead to slower rollback;
and vice-versa for the two-layer configuration.

3.2 One-layer logging: the Atomic Doubly-
Linked List

Assuming that recovery and rollback are rare events, we
can achieve faster logging at the cost of a slower retrieval of
log entries. The only logging structure is the ADLL, so in-
serting a record costs a small constant number of writes. We
optimize logging at the expense of more work during recov-
ery. We do so by not keeping any transaction-specific state.
At the price of a higher rollback/recovery cost we eliminate
the transaction table during logging and reduce the number
of variables we update; we only construct the transaction
table during recovery. This departure from back-chaining is
acceptable as we expect rollback/recovery to be rare events.

Instead of rolling back one transaction at a time, we per-
form a single backward scan of the log and recover all trans-
actions, at the expense of higher memory utilization (see
Section 4.5). Rolling back a single transaction is not typical
in system failures, but selective rollback is necessary to allow
users to abort specific transactions. To achieve this we need
to scan the entire log just for the rolled back transaction.
Long-running transactions exacerbate this, as do the num-
ber of concurrent transactions: they increase the number of
records between records of the transaction being rolled back
that we need to skip. To rectify, we clear the log at check-
points (Section 4.6): by tuning the checkpointing frequency
we balance the insertion overhead against the rollback speed.

The ADLL is a keystone of REWIND as it enables the
atomic insertion and removal of log records into/from the log
in NVM. The ADLL is recoverable itself through: (a) use
of single variables to log the internal state, which can be
updated atomically in hardware; (b) recovery by redoing
only the last operation: repeated redos, either partial or
in full (due to further system failures in the middle of an
ADLL recovery), are safe and leave the list in a correct
state; (c) simple operations that make it easier to produce
code with the redo recoverability property; and (d) perform-
ing all writes via non-temporal stores. The ADLL uses four
logging variables: lastTail, the tail of the list before in-
sertion; toAppend, the node to be appended; and toRemove,
the node to be removed. Each list node points to the next
and previous nodes, and to the actual log record. The lat-
ter is so we can create new records “off-line” and atomically
insert/append them to the list.

Append This operation involves creating the new node,
updating the tail/head of the list (if needed) and the next

pointer of the last tail. The operation for the ADLL is shown
in Algorithm 1. Lines 5 and 10 mark the beginning and end,
respectively, of the persistent operation. Line 5 corresponds
to the critical update: it saves the node to be appended so
the operation can be redone during recovery. If the system
fails at any point before line 5, the state of the list is not
altered, and thus consistent. If the system fails after line 5,
the recovery operation (described next) will re-apply the
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Algorithm 1: Append operation on the ADLL, invoked
as part of the transaction manager’s logging operation.

input: element E to insert

1 // set up new node
2 n = new Node(); n.element = E; n.prior = tail;
3 // undo information
4 lastTail = tail; // Keep tail before logging last insertion
5 toAppend = n;
6 if head = NULL then head = n; // update head
7 if tail 6= NULL then tail.next = n; // update tail
8 tail = n;
9 // append finished, clear undo

10 toAppend = NULL ;

append. Line 4 is not critical as it only sets lastTail and
does not alter the state of the list. If the system crashes
between lines 4 and 5 this value will be overwritten by the
next append attempt. The order of the updates of lines 4
and 5 is critical for correct recovery. In line 6 the head of
the list is updated, if necessary. This is not critical as it is
designed so that it can be repeated multiple times during
recovery. In lines 7 and 8 the next pointer of the tail and
the tail itself are updated. If the system fails after line 10,
the state of the list includes the new node and is consistent.

Recovery during append We use the toAppend variable
to identify the interrupted action: a non-NULL value implies
an unfinished append operation. Thus, we need to repeat
the critical section of the append. To allow the recovery code
to be recoverable itself we use the lastTail variable, instead
of tail used originally (line 7 of Algorithm 1). This resolves
the problem of a crash between lines 8 and 10 of Algorithm 1
that would cause the second recovery to reinsert the node.

Removal To guarantee atomicity and recoverability of re-
movals we follow the same principles. We store the node
to remove in the toRemove variable at the beginning of the
critical section, similarly to toAppend. To recover, we repeat
the removal code which is designed to be safely re-executed.
We first check the toRemove variable to identify if the system
crashed during removal and repeat the process.

ADLL recovery We recover by first identifying the in-
terrupted operation (append or removal) by checking the
toAppend and toRemove variables. Then, we repeat the ap-
propriate operation as discussed.

3.3 Optimizing the log structure
Appending a record to the ADLL through Algorithm 1 re-

quires multiple non-temporal stores and bears overhead due
to the write latency and the use of fences. Moreover, writes
refer to non-consecutive locations (the list’s nodes), which
forbids packing them to fewer cachelines. We can signifi-
cantly reduce the write overhead by changing the memory
layout of the data structure by blocking multiple records
into fixed-size buckets represented as arrays, as shown in
Figure 2. After creating a log record we place it into a
bucket with one write, rendering insertion both atomic and
cheap. The log is resized by atomically appending new buck-
ets to the ADLL. This layout uses cheap array appends and
amortizes the cost of atomic expansion: instead of single
nodes, we insert buckets. The recovery algorithms are unaf-
fected by the new structure. The only exception is that we
need to keep the next position in the last bucket to insert a
new record. Doing so through a non-temporal store would
increase the insertion cost. Instead, we reconstruct the in-
formation during the analysis phase in the event of a crash.
We initialize the cells of each bucket to zero, and, during

bucket
record

record

record

bucket
record

record

record

bucket
record

record

record

Figure 2: Minimizing the write overhead.

analysis, we identify the last occupied cell after skipping all
empty cells cleared by the log clearing process.

Clearing the log Removing log records from the hybrid
structure is more involved due to the need to shift records
to fill removed record gaps. Doing this atomically is ex-
pensive and adds unnecessary complexity. We avoid it by
allowing marked gaps in a bucket, keeping count of occupied
cells, and removing a bucket when it becomes empty. We
do not explicitly store bucket counts, but, in the event of a
crash, we reconstruct them through the marked gaps. We
thus simplify record removal but may waste memory in long-
running transactions. Under both force policies, the records
of long-running transactions can span multiple buckets, thus
preventing bucket removal. We can tune bucket size to bal-
ance the impact of long-running transactions. Alternatively,
we can compact the log if its occupancy drops below some
threshold by creating a new log, copying records over, and
atomically changing the pointer to the head bucket.

Multiple log records per cacheline A key challenge in
keeping user data in NVM is the lack of control over when
their updates become persistent, preventing DBMS-like op-
timizations [10, 27] where the log tail is flushed from memory
to persistent storage in batches. This guarantees the per-
sistence of log records and allows the packing of writes in
cachelines in NVM, but it is not possible when user data is
also in NVM: delaying log writes may cause data writes to
overtake their log records, violating the WAL protocol.

In REWIND, we can perform similar optimizations over
our hybrid log. Multiple records are packed into a single
cacheline since the record pointers are stored in consecutive
memory locations. This does not require the log records
themselves to be stored together in memory. The compiler
needs to reorder the log calls and place them in batches
above the corresponding user writes. This guarantees the
log writes are not overtaken by user writes and records are
placed in one cacheline. With 64-byte cachelines and 8-
byte pointers we need just a single fence and a single non-
temporal store for every eight log records. This also mit-
igates the cost of the fence and the group size serves as a
tuning knob for adjusting to different fence latencies.

Commit log records can be reordered safely before the
user writes as the log records that precede them guarantee
recoverability. Even if the commit records cannot be moved,
we can move all preceding records and proceed as before.
This requires the cacheline be written atomically since we
only assume the hardware can guarantee single-word atomic
writes. We do this by keeping the position in the bucket up
to which log records are guaranteed to be persistent. This is
set to zero when the bucket is created. Then, it is updated
after we issue a memory fence (using a non-temporal store)
with the position of the last record. This guarantees that
all log records up to that point are persistent. If a cacheline
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is not intentionally flushed, this index is not updated. This
is vital for ensuring correctness, as during recovery we only
consider log records up to the last persistent index. We issue
a memory fence/index update for every b|cacheline|/|pointer|c
records; or when the bucket is full; or when we find an END
record. The latter is important since END records mark the
completion of commit/rollback. Delaying the update of the
last persistent position after a commit may lead to having
to abort a completed transaction after a crash.

3.4 Two-layer logging: the Atomic AVL Tree
To improve search in the ADLL we use an auxiliary struc-

ture: an Atomic AVL Tree (AAVLT), which indexes log
records by their identifier and is recoverable by maintaining
a log of its internal operations in the ADLL. The most inten-
sive logging activity is during rebalancing on insertion/re-
moval. We use the optimized version of the ADLL. Every
update to the AAVLT is only executed by a single thread and
forwarded directly to NVM. Doing so allows us to log only
the last operation on the AAVLT and clear the log entries
after completion, thus reducing the length of the ADLL.

In terms of AAVLT insertion and removal: (a) we log all
the writes that affect the state of the structure, and (b) we
delay the de-allocation of the removed nodes until after the
successful completion of the operation. The logging and re-
covery implementation is a simplified version of the recovery
scheme of Section 4. We also skip the analysis phase as there
is only one transaction to undo. Rollback also largely re-
mains the same with the only issue being locating the next
log record to undo. This is straightforward for a normal
rollback (the previous entry), but after a crash during the
rollback operation itself we need to skip all records that were
previously undone and continue from that point. We do this
in the same way as in the recovery of one-layer logging (see
Section 4.5). Finally, we clear log entries after each AAVLT
operation as we describe in Section 4.6 for the force policy.

4. THE RECOVERY RUNTIME

4.1 Transaction recovery management
The transaction recovery manager maintains two struc-

tures: the log and the transaction table. The log tracks
the program’s writes. The format of these records is stan-
dard and includes the record ID, the transaction ID, the
record type, the old and new values, the address of the mem-
ory location modified, and pointers to other records. The
transaction table stores information about the active trans-
actions. Transaction table entries include the transaction
ID, its status, the ID of the last record of the transaction,
and the ID of the record to undo next. The transaction ta-
ble is constructed during recovery in all configurations but
is maintained during logging in the two-layer configuration.
There is no need for a dirty page table as NVMs are byte-
addressable. The transaction recovery manager constructs
the transaction table at application start and determines
whether a system or application crash occurred, in which
case recovery is performed, or whether this is a clean start.

4.2 Logging
Under the WAL protocol a log record must be persisted

before the corresponding persistent write. We use this ap-
proach for the ADLL, the AAVLT in the two-layer configura-
tion, and the programmer data (Section 2). We use physical

logging instead of logical logging as it fits better with impera-
tive languages. DBMSs enforce WAL with system calls and
a synchronous I/O interface. In REWIND, we must enforce
WAL for CPU writes that pass through a complex memory
hierarchy and may be re-ordered before reaching NVM. We
use a simplified version of the original ARIES log function
with the key difference being that the dirty page table is
absent, as we do not have pages. For one-layer logging the
transaction table is also absent during logging and only re-
constructed during recovery. Log records are created given
appropriate parameters and then a memory fence is issued
to ensure the record fields have reached the memory. After
that, the record is inserted atomically to the log. If two-
layer logging is used, the record is inserted into the AAVLT
and the AAVLT maintenance operations are logged instead.
As we discussed in Section 3.3 we can reduce the number of
fences required by moving groups of log records before the
writes and then issuing a single fence.

4.3 Commit
The log function guarantees that the relevant log records

are in NVM upon commit. Under a force policy, all updates
of a transaction must be in NVM by the time a transaction
commits. We do this by directly updating NVM using non-
temporal stores and follow it, at commit-time, with a mem-
ory fence and an END log record. We may also then remove
the log entries of this transaction. In no-force configurations,
all we need is to insert the END log record at commit-time.
The log entries of committed transactions are cleared in the
background by checkpointing (as we will see in Section 4.6).
ARIES follows a no-force policy to improve I/O when writ-
ing log pages and dirty pages to disk. In NVM, persist-
ing the log entries is as expensive as making the updates
themselves persistent. ARIES uses a steal policy, which in
our case is inapplicable as there is no buffer-pool. Commit-
ting in ARIES explicitly forces any in-memory log entries
to persistent storage. This is not required in REWIND as
log entries are immediately made persistent (through non-
temporal stores). This is a novel requirement in NVM-based
systems to prevent reordering of writes in the memory hier-
archy from breaking the WAL protocol.

Memory de-allocation (e.g., line 7 of Listing 1) requires
special handling for recoverability. In no-force configura-
tions, we delay memory de-allocation until the correspond-
ing log entry is processed at the next checkpoint (see Sec-
tion 4.6). The de-allocation details are stored in a special
DELETE record. In force configurations, we postpone mem-
ory de-allocation until after committing (as in line 16 of
Listing 2). We also rely on a DELETE record to handle a
system failure between commit and the actual de-allocation.

4.4 Rollback
Transaction rollback in REWIND (either explicitly or as

a result of a system failure) proceeds as follows. In one-layer
logging, rollback is a trivial backward scan. The situation is
more complicated in two-layer logging, where we selectively
scan the log for the transaction being rolled back through the
AAVLT. The rollback can be repeated an unlimited number
of times through the use of CLRs that log undo operations.
As we use physical logging, undo sets a variable to its old
value. Note that under the force policy the undos should be
made persistent as well. This is required to be able to clear
the logs after the rollback. One complication is that we need
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to redo the last CLR when we recover from a crashed roll-
back. This protects from the corner case of a crash after the
creation of the last CLR but before the corresponding up-
date was made persistent. Finally, we mark the successful
rollback completion by writing an END log record.

4.5 Recovery
To recover, we must first recover the log itself. This is

followed by either three phases (analysis, redo, and undo) or
two phases (analysis and undo) depending on the force/no-
force configuration. ARIES and DBMSs exploit the I/O
substrate to present a consistent and persistent log structure
in case of system failures during log writes. In our case
the log is in NVM. Thus, we require custom mechanisms to
recover from interrupted log updates (see also Section 3).
When recovery finishes, we also clear the transaction table
as all transactions are henceforth considered completed.

After recovering the log, the analysis phase reconstructs
the transaction table by scanning the log forward to the
point of failure. Then, in the no-force/three-phase config-
uration only, we scan the log forward again and redo all
writes. The redo phase handles a crash during a previous
rollback, as it ensures that all undos are redone and conse-
quently not lost during the second crash. In the third phase
we consult the transaction table to undo all uncommitted
transactions. The undo implementation depends on whether
we use one- or two-layer logging as we will discuss shortly.
After completing recovery, and under a force policy, we know
that all transactions are completed—either committed or
aborted. Thus, we clear the log in three steps: (a) keep the
pointer to the log in a temporary variable; (b) create a new
log; and (c) de-allocate the old log. De-allocating the entire
log is faster compared to individually removing its records.

Two-layer logging For each unfinished transaction, we
update its status as being aborted and scan its log records
backwards by following the undoNextLogID pointers: the ID

of the next record to undo; we retrieve each record through
the AAVLT and call the rollback function. Then, we write
END records for all aborted transactions. In the force policy,
to address the corner case of a crash between the last CLR
and the corresponding user write, we redo the last CLR.

One-layer logging This is similar to undo in two-layer
logging with two main differences: First, selectively scanning
the log is too inefficient so we implement a custom undo
process (shown in Algorithm 2) by undoing all uncommitted
transactions in a single backward scan. Second, during the
scan we track the last CLR (undo) record of all transactions
at an unfinished rollback state with the aid of an auxiliary
data structure. We use this to skip the UPDATE records that
have already been aborted so we can find the next record to
undo without using the undoNextLogID pointer.

4.6 Log checkpointing
Reducing the size of the log is an important requirement

of REWIND as: (a) despite their good scalability, NVM
capacities will likely lag behind those of disk, and (b) the
fine-grained logging of REWIND leads to larger metadata
sizes. Keeping the log small is critical in one-layer logging
to reduce the cost of scanning. The removal of log records
depends on the configuration. When forcing, we clear the
log records right after a transaction commits/rollbacks. In
a no-force policy the records are removed at checkpoints.
At a checkpoint, the cache is flushed to make all pending

Algorithm 2: Undo operation (one-layer logging) in-
voked during recovery.

1 while ADLLLog.hasPrior() do
2 rec = ADLLLog.prior();
3 xact = transactionTable[rec.xactID];
4 if xact.status = RUNNING or xact.status = ABORTED

then
5 if xact.status = RUNNING then
6 ADLLLog.insert(xact.xactID, ROLLBACK);
7 if rec.type = CLR then
8 if undoMap.[rec.xactID] 6= NULL then
9 undoMap[rec.xactID] = rec.undoLogID;

10 if force policy then rec.redo();

11 else if rec.type = UPDATE and rec.isUndoable then
12 if undoMap[rec.xactID] 6= NULL
13 and undoMap[rec.xactID] ≤ rec.logID then
14 // extra arguments for CLR record omitted
15 ADLLLog.insert(xact.ID, CLR, . . . );
16 rec.undo();

17 // Add END records
18 while transactionTable.hasNext() do
19 xact = transactionTable.next();
20 if xact.type 6= FINISHED then ADLLLog.insert(xact.ID, END) ;

writes persistent. Regardless of the method used, we have
to update the log in a recoverable way. We thus atomically
remove each transaction’s END log record as the last oper-
ation to guarantee that, after a crash during clearing, the
next attempt will be performed in exactly the same way.

To clear the log when forcing, we scan the log backwards
and remove the records of committed transactions. A check-
point under a no-force policy is more complex. It is designed
as a “cache-consistent” checkpoint to allow fine-grained lock-
ing. This forces a scan of the log, but allows concurrent
transactions to keep using the log, which is possible as trans-
actions only append to the log while checkpointing removes
records from the middle. We insert a CHECKPOINT record
before the cache flush to mark the point in the log that is per-
sistent; all records before that point can be safely removed.
We do this by removing END records last. Issuing first the
cache flush and then the CHECKPOINT record could lead to
newly inserted records appearing to be persistent.

4.7 Concurrency
REWIND allows low-overhead, fine-grained concurrency.

We use simple locks to serialize log access and ensure
traversals (during a checkpoint) are thread-safe. The one-
layer/no-force configuration offers the finest-grained concur-
rency due to the simple log structure, which allows us to lock
the log only briefly during insertion or removal. REWIND
could further benefit from a lock-free ADLL but this is left
for future work. Thread-safe access to user data by multiple
transactions in REWIND is up to the programmer. This is
due to REWIND’s imperative language nature, which allows
the programmer to arbitrarily update data.

5. PERFORMANCE EVALUATION
We implemented REWIND in C++ (using g++ 4.7.3) to

evaluate its performance. We used a quad-core Intel®

Xeon E5420 clocked at 2.5GHz per core with 12GB of fully
buffered DDR2 memory running the GNU/Linux 3.9 kernel.
We emulated NVM by adding latency through a busy loop
(see also [31]) preceded by a cacheline flush and followed
by a memory fence. The latency emulation is inlined be-
fore accessing NVM. We consider every non-temporal store
as an individual NVM write, but group consecutive writes
to the same cacheline into a single NVM write. We set the
NVM write latency to 510 processor cycles (150ns). We do
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not model a higher NVM read latency than DRAM because:
(a) the two are already comparable in current NVM tech-
nology [25]; and (b) transaction processing is update-heavy
so writes affect performance the most.

We compare REWIND to Stasis [27], a state-of-the-art
storage manager for persistent data structures. Stasis em-
ploys data-structure-specific persistence and recovery op-
timizations as opposed to general DBMS-based recovery
mechanisms. We also compare to the popular BerkeleyDB.
Finally, we include the version of Shore-MT from [33], which
is heavily modified for persistent memory. All approaches
work over block devices, so an easy way to port them to
NVM would have been to run them on a memory-mounted
file system (e.g., RAMFS). We followed a different ap-
proach and used PMFS [9]: a kernel-level file system that is
memory-mounted and byte-addressable. PMFS guarantees
persistence through standard file system calls, but its im-
plementation is optimized for byte-addressability, thus min-
imizing the overhead over NVM. Thus, it does not adversely
impact the performance of Stasis, BerkeleyDB or Shore-MT.
We further favor the two former systems by only charging
latencies for user-data writes to PMFS and not for PMFS’s
internal bookkeeping writes. We also favor Shore-MT by
disabling any latencies used in [33]. We do not compare to
approaches like Mnemosyne [31] or NV-Heaps [5] since they
do not provide full logging and recovery functionality and
are thus complementary (see also Section 6).

We used BerkeleyDB version 6.0.20 deployed as in [27].
The cache and log buffer sizes matched those of Stasis. The
lock manager was disabled to further improve performance.
For Shore-MT we used the transaction-level partitioning
variant with durable-cache enabled and similar configuration
with the other two systems. We refer to the three versions of
REWIND as Simple, Optimized and Batch and these corre-
spond to the doubly-linked-list (Section 3.2), hybrid doubly-
linked-list (Section 3.3) and hybrid doubly-linked-list with
batched log records (Section 3.3) implementations. We con-
figured the Optimized version with a bucket size of 1,000
records and the Batch version with a 64-byte cacheline size
and 8-byte pointer size to match our hardware. In Sec-
tion 5.1 we use Optimized REWIND for all one-layer con-
figurations as this is the configuration used as the bottom
layer of the two-layer approach. All results are the average
of three runs with standard deviation average of 1.4%.

5.1 Sensitivity analysis
Logging overhead We measure the overhead of logging as
a function of the number of memory stores. We implemented
a microbenchmark with a single transaction that alternates
between updating an in-memory table and performing some
computation between updates. The transaction successfully
commits at the end. We calibrated the computation cost
to be a multiple of the cost of a non-logged store to NVM.
In the left plot of Figure 3 we show the logging overhead
as a function of the fraction of time spent on updates; the
overhead is reported as the ratio between the performance
of REWIND and the non-recoverable implementation over
NVM e.g., a ratio of 5 means REWIND is 5x slower. We
tested all four configurations: two-layer or one-layer logging
(2L or 1L); and force or no-force policies (FP or NFP).

The rightmost point of the plots represents the worst case:
the user program only updates critical data. Then, the over-
heads of the two-layer configurations are higher compared
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Figure 3: Logging overhead as a function of update
intensity (left) and number of skip records (right).

to the one-layer configurations. The low overheads of the
one-layer configurations show the effectiveness of the Opti-
mized implementation of REWIND. The difference between
the overheads of the two-layer and one-layer configurations
stem from the cost of using the AVL tree and maintaining
the transaction table. The total overhead decreases steeply
as the intensity of updates decreases. For a 10% update
intensity, the overall overhead drops to only 1.5× for the
one-layer no-force configuration and 8.5× for the two-layer
no-force configuration. The difference in logging overhead
between the force and no-force policies is not as dramatic,
especially for one-layer logging, but it is still significant. To
better convey the information we have magnified the plot for
the one-layer runs at the bottom of the graph. For one-layer
logging the overhead varies between 2% to 35% and for two-
layer logging between 24% to 74%. The increased logging
overhead of the force policy is due to the more expensive
non-temporal writes to NVM for the user updates and from
the extra work to clear the log at commit (Section 4.3).

We next focus on the comparison of one- and two- layer
logging under a force policy. Recall that commits in one-
layer logging require linear scans of the log, which become
more expensive with more interleaving log entries (a mea-
sure of the number of concurrently running transactions).
We term such entries skip records, as they will need to be
skipped if this transaction is to be selectively processed.
Two-layer logging rectifies this through the AVL index. We
changed our microbenchmark to generate a variable num-
ber of records from other transactions between records of a
specific transaction. All transactions update the same in-
memory table, so they correspond to the worst-case 100%
update-intensive workload of the previous experiment. The
number of skip records varied from 100 to 1,000. This might
seem like a small number, but recall that REWIND runs in
user-mode and in a single application context. Skip records
correspond to the number of intervening concurrent updates
of a shared resource in a single context (performed, perhaps,
by multiple threads), so a smaller number of such records is
enough to measure the overhead and sufficient to indicate
the performance trends of each REWIND configuration.

In the right plot of Figure 3 we report the overhead of
the one- and two-layer configurations as a function of the
number of skip records. The overhead is again expressed as
the ratio over the performance of the non-recoverable ver-
sion of the same microbenchmark. In one-layer logging the
overhead grows sharply with the number of skip records. In
two-layer logging, on the other hand, the overhead is rela-
tively fixed. In reality, it also grows with the number of skip
records, but at such a slow rate that it is untraceable in the
plot. Even though one-layer logging starts off performing
better than two-layer logging, its degradation as the num-
ber of skip records grows is so severe that the two-layer
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Figure 4: Single-transaction rollback (left) and re-
covery (right) for a varying number of skip records.

configuration outperforms it after around 600 skip records.
This suggests that in a user application the decision of which
REWIND configuration to employ is not a clear one as there
will be a crossover point beyond which the two-layer config-
uration starts showing its merits. It is up to the user to
decide if the concurrency needs of the application are high
enough for two-layer logging to be the best choice.

Rollback and recovery costs Our purpose is to assess
the impact of the number of logging layers on the perfor-
mance of single transaction rollback. We use the same mi-
crobenchmark as before, but instead of committing the tar-
geted transaction we roll it back. In the left plot of Figure 4
we show the rollback duration (in milliseconds) as a func-
tion of the number of skip records for the one- and two-layer
configurations and for a force policy. The rollback time of
the one-layer configuration grows faster than that of the
two-layer configuration as we increase the number of skip
records. The two-layer configuration catches up with the
one-layer one at around 400 skip records. As was the case
for commit, this suggests that the two-layer configuration
exhibits its merits after a sufficient number of skip records.
Again, the programmer should customize the REWIND con-
figuration for the expected application workload. REWIND
itself can be tuned to adapt to various workloads.

Next we report the cost of aborting a single uncommitted
transaction during recovery, instead of rolling it back dur-
ing normal operation, again as a function of the number of
skip records. This case appears when a transaction starts
its commit protocol, but does not finish committing (i.e., it
does not log an END record); it must then be aborted during
recovery. This continues the analysis of the choice between
one- or two-layer configurations, but in a more contrived sce-
nario. We extended the microbenchmark to commit all other
transactions but the target one, but without clearing them
from the log so their entries have to be skipped when recov-
ering the target. That could happen if the system crashed
after these transactions logged their END logged (so the sys-
tem will not try to abort them) but before clearing the log.
In the right plot of Figure 4 we report the recovery time as
a function of the number of skip records for the one- and
two-layer configurations and with a force policy. One-layer
logging now significantly outperforms the two-layer config-
uration. Although two-layer logging performs better during
the undo phase, and for selective transaction rollback, it
is swamped by the slower iteration over the log contents
during the analysis/redo phases thus greatly exacerbating
the recovery time. This contrasts the earlier results where
one-layer logging was outperformed by two-layer logging and
reinforces the intricacies of choosing a configuration.

We now report the total processing cost (logging plus com-
mit or recovery) as a function of the likelihood that trans-
actions are recovered. We extended the microbenchmark to
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Figure 6: Impact of checkpointing frequency.

select a varying number of transactions to be recovered and
timed both the logging and the commit or recovery process
of all transactions. In Figure 5 we show the total time as
a function of the fraction of transactions that need to be
recovered, for the one-layer configuration with both force
and no-force policies and with three values of skip records:
10, 150 and 300. For both policies we factor out the dura-
tion of log clearing to compare the methods irrespectively of
whether clearing is immediate or through checkpoints. We
do not consider the two-layer configuration as we have al-
ready seen it perform worse than the one-layer one in terms
of both recovery and logging. The execution time is sen-
sitive to the number of skip records given the dependency
between rollback/recovery cost and the value of this param-
eter, as was shown earlier. Recall that the no-force policy
requires two phases during recovery, whereas the force policy
requires three. Observe then that the no-force policy has a
slight advantage for the same number of skip records and a
very low crash probability. It is eventually outperformed by
the force policy because of the extra recovery phase. This is
more evident as the number of skip records increases because
the duration of the extra phase increases as well.

Checkpoint overhead To measure the checkpoint over-
head we inserted ten million log records in the three
REWIND versions, configured with one-layer logging and
a no-force policy. We ran the insertions for each config-
uration with and without checkpoints and we report the
overhead of the checkpointed run as the percentage of non-
checkpointed execution for a varying checkpoint frequency.
Overall, the overhead declines with decreasing checkpoint
frequency. However, the overhead in the Simple version is
more severe compared to the other two versions. This is due
to the coarser degree of concurrency: the Simple approach
needs to lock and serialize the insertion of a new record to
the ADLL while the other methods only apply a single up-
date to a bucket. As shown in Figure 6, the overheads of
the Simple, Optimized, and Batch REWIND versions vary
from 79% to 60%, 32% to 9%, and 20% to 3% respectively.

5.2 Complex transactional workloads
Logging We evaluate the overhead of REWIND when re-
covering data stored in a B+-tree. We tested eight con-
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Figure 7: B+-tree logging performance for
REWIND vs. no recoverability (left); REWIND vs.
Stasis, BerkeleyDB and Shore-MT (right).

figurations: DRAM, without persistence or recoverability;
NVM with persistence but without recoverability; the three
REWIND versions running on NVM; and Stasis, Berke-
leyDB and Shore-MT running on NVM. The last six con-
figurations guarantee persistence and are recoverable. All
REWIND versions were configured with a no-force pol-
icy and without checkpoints. We implemented one in-
memory B+-tree version for each different persistence layer:
REWIND, Stasis, BerkeleyDB, Shore-MT. We loaded the
B+-tree with 100k 32-byte-long records and performed a mix
of 200k lookups and updates as we varied the read/update
ratio. The updates were equally divided between insertions
and deletions for a constant tree size per read/update ratio.

In the left plot of Figure 7 we show the total execution
time for the workload as a function of the fraction of update
queries. The overhead of the DRAM and NVM implemen-
tations grows with the fraction of updates, albeit gently, as
updates are more expensive than lookups. This is exagger-
ated in the NVM implementation because of the overhead
of NVM writes. All REWIND configurations perform well
and close to the DRAM and NVM implementations. The
Optimized version improves the Simple version by 27% and
the Batch version improves it by 37%. We therefore focus
on the REWIND Batch variant from now on. In the right
plot of Figure 7 we compare the overhead of REWIND to
Stasis, BerkeleyDB, and Shore-MT. REWIND outperforms
Stasis by 85×, BerkeleyDB by 105× and Shore-MT by 205×
at 100% update queries. This is due to REWIND’s min-
imalistic design, leaner software stack, and NVM-specific
optimizations. Shore-MT is outperformed as it is optimized
for multi-threaded performance while the workload is single-
threaded. In Section 5.2 we show how Shore-MT scales bet-
ter than BerkeleyDB and Stasis in multi-threaded mode.

Rollback and recovery We report the cost of transac-
tion rollback as a function of the number of operations.
We started with a 100k-record B+-tree and then invoked a
mixed workload of an equal number of randomly distributed
insertions and deletions. This keeps the size of the B+-tree
small, but generates a large number of log records. We re-
port the results in the left plot of Figure 8. REWIND Batch
outperforms Stasis by 30×, BerkeleyDB by 12× and Shore-
MT by 4×. This is due to the REWIND algorithms and its
minimal physical fine-grained logging, as opposed to the log-
ical logging of Stasis, or the coarse-grained, page-level log-
ging of BerkeleyDB and Shore-MT. Shore-MT’s excellent
performance is due to undo buffers keeping the undo log
records in memory. In the right plot of Figure 8 we report
the cost of full recovery for multiple transactions. We used
the same setup but now we created a new transaction ev-
ery 200 operations. Thus, the number of transactions varies
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Figure 8: B+-tree recovery for single (left); and mul-
tiple transactions (right).

from 400 to 4,000. REWIND outperforms Stasis by 20×,
BerkeleyDB by 14× and Shore-MT by 8×. This is due to the
lower per-transaction overhead of REWIND and one-layer
logging doing away with the transaction table. Coupled with
the efficient NVM-specific implementation, the result is a
large performance margin over the competition.
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Figure 9: Multithreaded B+-
tree logging performance.

Concurrency To
test REWIND’s fine-
grained concurrency,
we started multiple
threads with each
thread performing
100k operations on
a B+-tree. Each
operation is either an
insert/delete pair or
a lookup. The lookup-to-insert/delete ratio ranges from
20% to 80% (e.g., 30% lookups, 70% insert/delete). Each
thread is assigned a ratio at the beginning and picks up
operations from a pool of available tasks. We measured the
total duration of the run, i.e., until all threads finished,
as a function of the number of threads. REWIND uses its
own library-level concurrency mechanisms. For Stasis and
BerkeleyDB we let readers progress without locks but use
locks for insert/delete pairs. This improves performance for
BerkeleyDB as it eliminates deadlocks. For Shore-MT we
use its own concurrency mechanisms for up to four threads
as it creates one log partition for each core. Beyond that
we found it better to use the same locking as Stasis and
BerkeleyDB. As shown in Figure 9, the processing times of
Stasis and BerkeleyDB grow linearly with the number of
threads. Shore-MT as expected scales better than Stasis
and BerkeleyDB until the first four threads and then yields
similar performance with BerkeleyDB. REWIND scales
significantly better after three threads. The processing time
for REWIND does not increase monotonically. This is due
to the OS scheduling threads to the same core. Although
we set the affinity of each task to a different core, the
lightweight locking of REWIND results in threads finishing
so fast that the OS seems to ignore that hint and schedules
threads with different affinities to the same core.

Memory Fence sensitivity Memory fence latency varies
depending on the storage architecture. We show how we can
mitigate its impact by grouping log records. We repeat the
benchmark of Figure 7 with the fraction of update queries
set to 1 (the worst case scenario). We compare REWIND
Optimized, which supports in-place updates solution but
no grouping, with REWIND Batch for varying group sizes,
e.g., REWIND Batch 8 uses 8 records per memory fence;
we also include variations of 16 and 32 records per group.
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sitivity.

Our results are
shown in Figure 10.
REWIND Optimized
is affected and is
slowed down by
5× while REWIND
Batch has a slow-
down of 1.63×,
1.32×, 1.18× for
group sizes of 8, 16,
and 32 respectively. We can therefore mitigate the fence
cost of different storage architectures by tuning the group
size. We also tested Stasis, a disk-replacement solution,
which remained unaffected as expected. These results are in
line with previous work [24]. In REWIND the optimizations
of Section 3.3 are twofold as they mitigate the cost of the
fence and also reduce the write overhead. Due to the lack of
pages REWIND does not need to restrict the transactions
of the group i.e., force all transactions in the group to
commit or abort.

5.3 TPC-C
We use a variant of the TPC-C benchmark to: (a) stress-

test REWIND; and (b) show that by collapsing the bound-
aries between the in-memory and the persistent representa-
tions we can improve performance by co-designing the al-
gorithms and the physical data layout. We implement the
TPC-C schema with B+-trees for table storage and focus
on the new order transaction. We use a scaling factor of
one and use ten threads on our test machine to simulate
the ten terminals issuing new order transactions, which is a
slight deviation from TPC-C where a terminal can choose
among five types of transactions. However, our goal is to
measure the overhead in write-intensive operations and not
test the features of a full-blown DBMS. Thus, the new order
transaction is the best choice as it is the most write-intensive
TPC-C transaction and the backbone of the entire workload.
We use four data layouts: standard persistent but not re-
coverable B+-trees in NVM; naive B+-trees over REWIND;
an optimized layout of B+-trees over REWIND to represent
compound keys; and the latter with a distributed log [24].

For REWIND with optimized B+-trees, we use an array of
B+-trees to represent a table with a compound key. For the
order tables (orders, order line, and new order), instead
of having a B+-tree with a compound key on (warehouse id,
district id, order id) per table, we noted that the do-
mains of warehouse and district consisted of one and ten
values respectively as there are ten districts in a single ware-
house. Thus, we build an array of ten B+-trees, each on
order id. In REWIND, the use of distributed logging is up
to the user. Using a single transaction manager for all trans-
actions dictates a shared log; while a per-transaction man-
ager implies a distributed log. This flexibility further enables
co-design: through the persistence and recovery guarantees
of REWIND, programmers can optimize the data structures
and the implementation of transactions.

As per the TPC-C specifications, we abort 1% of trans-
actions. In REWIND these transactions are rolled back
while in the standard NVM version they are considered non-
recoverable and ignored: this adds a significant overhead to
the REWIND B+-tree. We do not compare to other systems
as REWIND significantly outperformed them earlier.
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Figure 11: TPC-C throughput.

In Figure 11, the
non-recoverable im-
plementation with
naive data structures
has a throughput
of 273k transactions
per minute (tpm).
The optimized im-
plementation over
REWIND yields a
throughput of 197k tpm for a 1.39× overhead. This
highlights the potential of co-design: REWIND enables
program-level workload-specific optimizations as persis-
tence and recoverability need not be offloaded to a different
runtime. Distributed logging improves the throughout
even more to 262k tpm and a 1.05× overhead. REWIND
with naive implementation of the data structures gives a
throughput of 37k tpm for a slowdown of 7.37× over the
non-recoverable NVM version. This performance is in line
with the microbenchmark results of Section 5.1 and the
results of [24] for distributed logging.

6. RELATED WORK
Persistent virtual memory [26, 34] has received renewed

interest through persistent regions [14]. Such attempts em-
ploy block-level I/O devices and file abstractions. Recov-
erability relies on staging persistence and logging through
combining volatile main memory and persistent disk stor-
age. Closer to our work, [19] uses battery-backed DRAM
for persisting the file cache [3], but ultimately relies on I/O
and uses a coarse-grained region approach to undo logging.

Two recent proposals [5, 31] provide NVM heaps to ap-
plications. We leverage this to support in-memory persis-
tent data structures. Both [5, 31] only provide primitives
for programmers to create and manage their own recovery
protocols. Fang et al. [10] propose an NVM-based log man-
ager for DBMSs, which, unlike our approach, relies on a
client-server design and uses epoch barriers to guarantee
persistence. Giles et al. [12] address embedded transaction
management in user code, but unlike our work they require
custom hardware to force the redo log to NVM before com-
mitting, while keeping user updates in a dedicated buffer
before persisting the log; they do not elaborate on recov-
ery mechanisms. More recent work [13] has similar goals to
REWIND, but does not go as far in addressing recovery and
concurrency: it only performs redo logging without in-place
updates. Similarly, [35] embeds transaction management in
user code but it assumes the existence of a non-volatile cache
that it uses instead of logging. Finally, [2] studies the up-
date semantics of NVM data in lock-based code (as opposed
to transactional code) and touches only superficially on the
mechanisms used for logging and recovery in NVM.

Prior to NVM, researchers proposed battery-backed
DRAM and buffer manager extensions to support recover-
ability [21]. For instance, [6] uses battery-backed DRAM
with an ARIES-like protocol, but, unlike us, it still assumes
page-level I/O for data and log updates. DBMSs optimized
for volatile memory [8, 17] are also relevant. These signif-
icantly improve disk-based alternatives but are still subop-
timal for NVM as they are subject to the inefficiencies of a
block-based design towards durability.

Pelley et al. [24], propose distributed logging and group
commits for mitigating the memory fence latency in NVM.
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These are orthogonal to REWIND and we examine their ef-
fects in Sections 5.2 and 5.3, respectively. Similarly, [33]
examines how NVM allows practical distributed logging.
Unlike our approach, [33] targets page-level data and log
updates. We compared this to REWIND in Section 5.2.

Recent work has considered more lightweight data man-
agement than full-blown DBMSs. For instance, [27] com-
pares both DBMSs and file systems to custom alternatives;
while [15] quantifies the overhead of several DBMS func-
tionalities. There has also been recent interest in similarly
extending file systems. For example, [23] presents an ex-
tended transactional and recoverable I/O interface for mul-
tiple, non-consecutive blocks. These still present a block
interface to programmers unlike our byte-addressable ap-
proach. Finally, there has also been work on query process-
ing algorithms e.g., [4, 30] for NVM. These differ from our
approach as they assume a complete DBMS instead of our
programmer-managed data structures.

7. CONCLUSIONS AND FUTURE WORK
New NVM technologies allow programmers to maintain a

single copy of their persistent data structures in main mem-
ory and access them directly with CPU loads and stores.
This renders transactional recovery mechanisms based on
block I/O and the separation of volatile and non-volatile
data inappropriate. We presented REWIND, a user-mode
library that directly manages persistent data structures in
NVM in a recoverable way. The library provides a simple
API and transparently handles recovery of critical data. Our
results show that REWIND outperforms I/O-based solu-
tions at a minimal overhead, thereby providing a promising
path toward enabling persistent in-memory data structures.

As this is a fresh research area, there is more work to
be done. Our overarching goal is to embed REWIND into
a compiler framework à la software transactional memory.
Further performance benefits will likely come if we imple-
ment the basic log structure using lock-free techniques. An-
other goal is to introduce autotuning so that the system
adapts to the workload through monitoring.
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