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ABSTRACT
We present new hash tables for joins, and a hash join based
on them, that consumes far less memory and is usually faster
than recently published in-memory joins. Our hash join
is not restricted to outer tables that fit wholly in memory.
Key to this hash join is a new concise hash table (CHT), a
linear probing hash table that has 100% fill factor, and uses
a sparse bitmap with embedded population counts to almost
entirely avoid collisions. This bitmap also serves as a Bloom
filter for use in multi-table joins.

We study the random access characteristics of hash joins,
and renew the case for non-partitioned hash joins. We intro-
duce a variant of partitioned joins in which only the build is
partitioned, but the probe is not, as this is more efficient for
large outer tables than traditional partitioned joins. This
also avoids partitioning costs during the probe, while at the
same time allowing parallel build without latching overheads.
Additionally, we present a variant of CHT, called a concise
array table (CAT), that can be used when the key domain
is moderately dense. CAT is collision-free and avoids storing
join keys in the hash table.

We perform a detailed comparison of CHT and CAT
against leading in-memory hash joins. Our experiments show
that we can reduce the memory usage by one to three orders
of magnitude, while also being competitive in performance.

1. INTRODUCTION
Joins are an enduring performance challenge for query pro-

cessors. In recent years, inspired by the trend of cheaper and
larger main memories, there has been a surge of advances on
in-memory joins, e.g., [18, 9, 11, 8, 4, 6, 5] . An “in-memory
join” typically means one in which the input tables, plus any
intermediate data structures, completely fit in memory.

The performance of these modern in-memory joins is truly
impressive. For example, we find that a join between a 100
million-row table and a 1 billion-row table runs at about 5
ns per tuple for many of the above variants. However, in
our product experience, a fully in-memory join has limited

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at The 41st International Conference on
Very Large Data Bases, August 31st - September 4th, 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 4
Copyright 2014 VLDB Endowment 2150-8097/14/12... $ 10.00.

applicability, because some input table or intermediate state
will eventually exceed the available memory.

For hash joins, the focus of this paper, the main challenge
for in-memory joins is the random accesses to DRAM involved
in probing the hash table from the “build”, or “inner”, table
with tuples from the “probe”, or “outer”, table. To minimize
these random access costs, in-memory joins usually partition
both the inner and outer tables into pieces that will fit well
into the L2 or L3 cache, and do joins within each partition.
Such a partitioned in-memory hash join has three steps:

• Partition the outer: Scan the outer and write out tuples
to partitions, based upon values of the join columns.

• Partition the inner in a similar fashion, based upon the
inner’s join column(s).

• Join, partition by partition. This involves reading each
inner partition, building a hash table on it, and probing
it with tuples from the corresponding outer partition.

While this process improves cache behavior, it requires
two reads and one write of the outer: to read it in, write out
partitions, and then read each partition to probe the hash
table. Even more scans may be needed if the partitioning is
done in phases to reduce TLB misses [18] . When the outer –
typically a large fact table – exceeds memory, these multiple
scans become very expensive.

While DRAM is cheap and getting cheaper, it is rarely
over-provisioned and unused. In many customer installations,
storage is over-provisioned, but DRAM is still carefully bud-
geted, and the workload quickly grows to consume available
memory. Moreover, a DBMS never runs just one join in
isolation:

• Queries typically join the fact with many dimensions,
on different columns. Using O(|outer|) memory per join
is expensive and sometimes impossible.

• DBMSs typically run many concurrent queries, and are
expected to handle ad hoc workloads. So even if the
machine has plenty of DRAM, a given query’s memory
budget will only be a modest fraction of that amount.

Even assuming that the inner will fit in memory is ques-
tionable. The inner’s hash table has a significant effect on
the inner’s memory consumption, and can make the differ-
ence between a join whose inner fits in memory and one that
does not.

1.1 Concise Hash Joins and Hash Tables
In this paper, we present a join that dramatically cuts

down on the memory usage, by up to 3 orders of magnitude,
compared to the leading in-memory hash joins from Balkesen
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et al. [6] . Further, our memory usage is mostly insensitive
to the outer’s cardinality. Our join is also faster in most
cases than this prior work, assuming that all the joins fully
run in memory. We argue that our techniques provide users
a more efficient, cost-effective, and robust configuration than
prior work.

We achieve this reduction in stages. First, we cut the
memory needed for data structures holding the join outer
by scanning it just once. Second, we use a new concise hash
table data structure for the join inner. Third, we can in some
cases further compact the inner hash table using a compact
array that avoids storing keys.

1.1.1 Scan the outer only once
We scan the outer in a pipelined fashion, probing the inner

and outputting results as we go. We primarily achieve this
using a join that does not partition the outer. To handle
extremely large inners, we also describe a technique for
partitioning the outer in a pipelined fashion (Section 3.2).

Historically, random access was viewed as the villain, and
so partitioning was necessary for a fast join. This has been
questioned by Blanas et al. [8] , who argue for fully non-

partitioned joins. But the authors of [6] challenge this
by adding partitioning and hardware-specific optimizations
to the hash table of [8] to achieve the currently fastest

in-memory hash joins. We second the claims of [8] , but
only on the probe side. We observe that hash joins do
data-independent random access (DIRA), which is not that
vulnerable to access latencies, and hence probing with a
non-partitioned outer works well.

However, the build side must also be considered. Tradi-
tionally, the build side of non-partitioned joins have suffered
significant contention when multiple threads insert into the
same hash table. In contrast, with partitioned inners, each
thread builds an independent hash table for each partition,
eliminating contention.

To avoid contention, our hash tables are designed to sup-
port partitioned build and non-partitioned probe. Our join
uses a single physical hash table that is logically split by
partition. During the inner scan, we do partitioning as usual.
Then, each thread picks one or more partitions and builds the
portion of the hash table corresponding to those partitions.

1.1.2 Concise Hash Tables
A join hash table must store both join keys and payloads

(columns referenced later in that query). Implementations
often double this raw size to handle collisions. For linear
probing, this overhead arises from the fill factor. For
chaining, the overhead comes from memory fragmentation
and pointer storage. Many hash tables also round up the
number of slots to a power of two.

We introduce the Concise Hash Table (CHT), a linear-
probing hash table that has almost no collisions and still
gets 100% occupancy in its array of (key, payload). A CHT
consists of three pieces: (a) a bitmap indicating the bucket
occupancy of a very sparsely-filled linear probing hash table
(this hash table is virtual and never built); (b) a dense array
of (key, payload) pairs, holding the non-empty buckets of
the virtual hash table; and (c) an overflow hash table.

Together, these structures compactly represent a large,
sparse hash table that has very few collisions (often < 1%).

CHT embeds precomputed population counts into its
bitmap to speed up lookups, which must map hash values to

positions in the (key, payload) array. These lookups have a
pure DIRA pattern – each lookup can be issued before the
previous ones finish. Doing N lookups into a CHT involves
two DIRA rounds of N accesses each – first into the bitmap,
then into the array. Compared to standard hash tables, the
first round is extra, but the bitmap is much smaller than the
array and usually fits higher in the cache hierarchy. Moreover,
we can reuse the bitmap lookup as a Bloom filter lookup for
the join, to avoid hash table probes for outer tuples that will
not find a match.

Due to its dense array, CHT does not support point inserts,
but join hash tables need only handle bulk inserts during
build. We describe how this is done, without building the
virtual hash table, in Section 2.2 .

1.1.3 Concise Array Tables (CAT)
When the domain of the join key is not too sparse, we can

do even better than CHT, in both memory consumption and
probe speed, using a concise array table (CAT). This is often
the case for numerically-typed (integer, date, decimal) keys.

The idea behind CAT is to map the key domain directly
onto the bitmap, and have an array of payloads alone. As
with CHT, this array has entries only for the occupied bits of
the bitmap. A CAT is entirely collision-free, and so need not
store join keys in the hash table, yet still has nearly 100% fill
factor. We show experimentally that CAT can be exploited
even for mildly dense keys, e.g., when the number of distinct
keys is only 1% of the range.

We also present optimizations to deal with common ways
in which key domains are not dense, including a technique for
combining CAT for most of the keys with a regular hash table
for the others, and a bijective hash scrambling technique to
deal with skewed key distributions.

1.2 Other Contributions of this Paper
We have implemented CHT and CAT in Blink3, a column-

store query processor being developed at IBM Almaden.
This is based upon, but distinct from, DB2 v10.5 with BLU
Acceleration [20] , which uses a variant of CHT and CAT.
In Blink3, inner tables are first scanned, local predicates
applied, and then built into hash tables. Then the outer
table is scanned and pipelined (in batches) through a series
of joins with inner (build) tables. We do late materializing
scans: each column is fetched only when needed.

In the case of multi-table join queries, we reclaim the extra
cost of probing the CHT (or CAT) bitmap as a Bloom filter
lookup. Bloom filters are a powerful method to eliminate
non-matching join outers early, and were suggested as far
back as R? [16] . We use the CHT or CAT bitmap itself as
the Bloom filter, and apply these filters for all joins first,
before probing the join hash tables. Thus, outer rows get
the cumulative filtering effect of all joins.

We present detailed performance numbers for hash joins
using CHT and CAT in Blink3, including comparisons with
partitioned and non-partitioned joins from the driver of [6] .

1.3 Data-Independent Random Access
Before diving into CHT, we do a performance analysis of

data-independent random access (DIRA). This is crucial to
decide whether outer partitioning is needed.

Abstractly, hash table probing is just a gather that does
repeated random accesses into an array of buckets. This is
DIRA, since the result of one lookup is not needed before
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Figure 1: Speed of gather for various lookupTbl car-
dinalities and widths.

issuing the next. So, theoretically, memory latency should
not matter; only throughput should matter. To see how
gather performs, we ran the following multithreaded micro-
benchmark on a 2-socket Intel E5-2665 machine with 8 cores
running at 2.4 GHz:

1. for (i=0; i<N; ++i)

2. opthd[i]← lookupTbl[permthd[i]];

Each thread scans a thread-local input array, permthd, and
uses those values as offsets into a shared lookup table, lookupTbl,
writing out to a thread-local array, opthd (each thread mallocs
perm and op separately, thereby affinitizing them to the local
socket). Array permthd contains uniformly-generated random
numbers, thus this does random accesses. However, these
are DIRA accesses because the lookup results, opthd, are not
needed until after the for-loop. This allows the processor to
prefetch these lookups.

Figure 1 plots the lookup speed as we vary the cardinality
of lookupTbl, the region being probed. We compare three
widths for the lookupTbl entries: 8, 16, and 32 bytes. The
outer cardinality, N , is set to 2 billion (all threads combined).
perm is always an array of 8-byte integers. All results use 32
threads, which gave the best speed.

Observe that modern machines do well at DIRA. At inner
size 1E2, lookupTbl is ≈ 1KB, so fits well in L1 cache. But
at size 1E8, the lookupTbl is much larger that the L3 cache.
Yet the gather speed worsens by less than 2.7X across this
range. In contrast, the latency to DRAM is usually 100X
worse than the latency to L1 cache. This explains the appeal
of non-partitioned joins such as [8] : we need very wide
partitioning to speed up probes, and the partitioning cost
can offset the gains.

0-byte payload
We also see in the plot that the random-access unit matters,
and that widening the lookupTbl hurts the lookup speed.
The 8-byte lookupTbl width is particularly significant. If we
view lookupTbl as a (trivial) join hash table, each entry of
lookupTbl has to have both a join key and a join payload.
Since we use an 8-byte perm array, an 8-byte lookupTbl

implies a 0-byte payload. Such empty payload joins occur
fairly often due to existential sub-queries and antijoins.
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Figure 2: A CHT with 5 keys. On the left is the
logical hash table with 8 slots, and on the right is
what is stored physically.

But notice that the lookup speed is not that much better
for the 8-byte width. We will see in Section 4 that CAT
does particularly well for such joins, because it avoids storing
the key entirely, so it needs no lookupTbl.

2. CONCISE HASH TABLES (CHT)
A concise hash table (CHT) is a linear probing hash table

in which we compress out all the empty buckets. As Figure 2
shows, a CHT consists of three pieces:

• An array of the non-empty keys and payloads.

• A bitmap sized to the uncompressed hash table size (8
in the example), indicating for each bucket whether it
is occupied or not.

• An overflow hash table, explained later.

The bitmap is implemented as an array of 64-bit words, but
in each word only 32 bits are used for the actual bitmap (in
the figure we use 8-bit words for illustration). The rest is a
pre-computed 32-bit prefix population count that marks the
number of 1-bits up to that word1. The population count
is used when probing into a CHT. The pseudo-code below
describes this process:

1. bkt = hash(key) % |bitmap|;

2. Check bkt’th bit of bitmap;

3. if not set,

4. the key is not present in the CHT

5. else

// Find # of ’1’ bits, up to bkt’th bit

6. word = bitmapWords[bkt/32];

bitsUptoBkt = word.bitmap & ~((~0)>>(bkt%32));

// prefixPopCount: # of ’1’ bits in prior words

7. pos =

word.prefixPopCount + popCount(bitsUptoBkt);

8. search in array for key, at positions

pos, pos+1, .. pos+Threshold-1

9. if not found, search in OverflowHT

During a probe, when we hash to a bucket bkt, we look
up the bitmap word at offset bkt/32. The prefix count for
this word is added to the population count within that word

1 96-bit words (64 for the bitmap plus 32 for the count), will
compact further, but cause extra cache misses.
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to find the offset into the key-payloads array. By in-lining
the prefix count within the bitmap in this way, we avoid
any extra cache-line accesses. We then search in the array
from that offset up to some threshold maximum number of
linear probes. Beyond that, we look in an overflow hash
table. The overflow can be any hash table – we use a simple
linear probing hash table.

When we do joins (Section 3), the first lookup into the
bitmap is not really an extra random access, because we
reuse it as the Bloom filter lookup for the join as well.

A CHT offers two benefits over conventional hash tables.
First, the memory space it uses is much smaller than a
regular hash table (both linear probing and chaining variants),
because the array of keys and payloads has 100% fill factor.
With the CAT variant (presented in Section 2.4), the savings
are even greater. For hash joins, this means the inner hash
table is more likely to fit in memory.

Second, the probe phase of a join does batch lookups.
With CHT, these can be done efficiently in a DIRA pattern.
Lookup into a CHT involves a lookup into the bitmap, fol-
lowed by a linear probe against the array. But doing this one
key at a time results in a data-dependent random access, be-
cause for each key the index into the array is determined only
after we look up the bitmap. Even if we batch this lookup
across many keys, we are accessing a variable number of
array positions for each key. So it is difficult to pre-compute
array positions before the array access.

We convert these into DIRA accesses by making collisions
both rare and bounded:

• We make the CHT bitmap very sparse. This is afford-
able because we spend only 2 bits per bucket.

• We eliminate linear probes longer than a threshold by
spilling such keys to an overflow hash table.

The net result is that during a join, the hash table lookup
for a batch of keys reduces to:

A) A DIRA access to the bitmap to fetch the words for
the accessed hash positions, followed by arithmetic to
calculate the positions in the array.

B) A DIRA access to the array to fetch threshold number
of matching buckets for each key.

C) A final pass over the rare overflow keys to look up
their key values from the overflow hash table.

2.1 Collisions and Overflow
For the bitmap, we use a fill factor of 1 in 8 – i.e., the

logical linear probe HT whose bucket occupancy this bitmap
tracks has a 1 in 8 fill factor. Even with this sparsity, the
overhead due to the bitmap is only 8× 2 = 16 bits per key,
much less than with traditional chaining or linear probing
(the extra factor of 2 comes from the population count).

We use classical multiplicative hash functions: for every
16-bit piece xi of the input key, multiply by (xi + hi), then
take a final modulus of the prime 231− 1, which can be done
efficiently via standard methods. The hi are hash function
constants. This family is universal, and from balls-and-bins
arguments we get the probability that a bucket has any
collisions for n keys is 1 − ((8n − 1)/(8n))n − (1/8)((8n −
1)/(8n))n−1 (the last two terms are the probability that a
bucket has 0 and 1 keys hashing to it), which is, as n→∞,

roughly 1− (9/8)e−1/8 = 0.72%

Since the collision probability is this low, we do not need
much linear probing. We use a linear probe threshold of 2,
i.e., the third key hashing to the same bucket is placed in the
overflow hash table. This prevents long collision sequences
from running into neighboring buckets, causing them to
overflow, too. The small threshold means that the buckets
accessed in the second DIRA pass are typically in the same
cache line (for each key). Overflows are expensive, but they
generally occur only when there is a collision and the next
bucket is also occupied, which occurs about 0.09% of the
time.

The overflow hash table has another benefit – robustness.
In our experience, every hash function fails (has excessive
collisions) on some inputs, leading to hard-to-diagnose per-
formance bugs. So we use a second hash function (from
the same family, with different multiplier constants) for the
overflow hash table. Keys spill to it only after excessive
collisions on the primary hash table, so if the primary hash
function is weak, the overflow can act as a backup.

2.2 Memory consumption during build
A challenge with CHT is that, during build, the final array

position for a key is not known until all the keys have been
inserted, because the position is given by the number of
occupied buckets, up to the one holding the requested key.

So how do we build a CHT?
One way is to build an actual linear probe hash table, by

allocating space for an array of |bitmap| keys, inserting keys
and payloads into it with linear probing, then forming the
bitmap based on which buckets are occupied, and finally
compressing out the empty buckets. But for CHT we want
a sparse bitmap. So it is expensive to allocate such a large
array, only to throw it away after the bitmap is built.

2.2.1 N:1 joins with enforced PK constraint
Upon closer observation, we note that if the input keys are

guaranteed to be unique (e.g., there is an enforced unique
constraint), linear probing can be done directly on the bitmap
itself. We do not need to insert any keys. So we can do a
two-pass build:

A) Scan input keys, hash each one, and set bits in the
CHT bitmap, with linear probing on collisions. If the
threshold is exceeded, put the key in the overflow HT.

B) Compute the (cumulative) prefix population counts
for the bitmap.

C) Scan input keys and payloads, hash again, and insert
into a compacted array, using the prefix population
count to find the insert positions.

2.2.2 Near N:1 and N:M joins
Enforced PK constraints are not that popular because they

impose index maintenance cost during inserts. But queries
sometimes care only for the first match for a join outer. This
case is common with (not) existential sub-queries. Even for
regular equijoin queries, where the SQL semantics requires
all matches for each key, the join can be a “run time N:1 join”
– a join that we determine is N:1 after building the hash
table, because there are no duplicates (we have even seen
cases in which the base table does have duplicate keys, but
they are eliminated by local predicates). Another common
situation is a near N:1 join, in which most keys have only 1
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Figure 3: Building CHT in parallel by logically split-
ting into partitions, with each built independently.

or 2 matches, and only a small number of keys have many
matches.

All of these situations are well handled by a CHT with its
overflow hash table.

In the first scan (Step A of Section 2.2.1), we just set bits
in the CHT bitmap. If there is a collision in this process,
we treat it as a hash collision (we have no way to know it is
not a duplicate key, because we are not storing keys during
this scan), and do linear probing until the collision sequence
grows beyond the threshold mentioned earlier. At that point,
keys are inserted into the overflow hash table, so if the key
repeats further, we can detect this is a duplicate, not a hash
collision.

Steps B and C remain exactly as before: we compute prefix
population counts on the CHT bitmap, and accordingly insert
keys and payloads into the CHT array.

Now consider the situations discussed earlier:

• (Not)Existential subquery: Here duplicate keys should
be eliminated, since the join does not need them. In the
overflow hash table we eliminate duplicate keys early. But
the first two occurrences of a key will occupy separate
slots in the CHT, because they will take up two bits in the
CHT bitmap during Step 1. We consider this 2X space
overhead for such keys to be an acceptable cost (especially
because these queries are often eligible for CAT, have no
payload, and thus the (key, payload) array is not formed
at all).

• Run time N:1 join: CHT is ideal for this situation, be-
cause there are no duplicate keys – any collisions in the
bitmap are hash collisions, and thus the CHT strategy of
treating them as hash collisions is perfect.

• Near N:1 and N:M joins: Keys that match to 1 or 2
payloads are handled well: all matches for a key will
likely be stored consecutively in the CHT array, and thus
accessed within a single cache line. Keys that match to
many payloads go mostly to the overflow (all but the first
two matches). So CHT doesn’t directly handle these “high
cardinality” keys, but any hash table good at N:M joins
can be used for the overflow hash table.

2.3 Parallelism during build
As mentioned earlier, partitioning benefits build speed,

because each thread can build a partition independently.

Further, after partitioning we can size the hash table perfectly,
and thus avoid having to resize it during build.

At the same time, we want to support non-partitioned
probes, as discussed in the introduction. So in Blink3 we
always build a single physical hash table. But, this physical
hash table is built by a partitioned build process.

Figure 3 shows the build process. Each thread scans
a subset of the input, and partitions it into thread-local
structures. When a page worth of keys have accumulated for
a partition, that page is added to a global linked list of pages
of that partition, under a latch (only a pointer is copied under
the latch). Since we want to form a single physical CHT, we
partition on the most-significant log NumPartitions bits of
hash(key).

After partitioning, a single physical CHT is formed. But
logically, this is split into NumPartitions CHTs. The CHT
bitmap is split uniformly into NumPartitions pieces. The
CHT array (of (key,payload)) is split according to the number
of keys found in each partition. Then, each thread scans the
linked list of keys and payloads for a partition, and builds into
the logical CHT for that partition (threads pick partitions
in work-stealing fashion). We restrict the linear probing for
each partition to operate within that partition alone (i.e., we
cycle around within the partition itself, if needed).

Thus there is no synchronization during the build, except
to compute the cumulative count of the number of keys up
to each partition (for logically splitting the physical CHT).

Note that this logically partitioned hash table works well
with either partitioned or non-partitioned probes.

2.4 Concise Array Table (CAT)
With CHT, we compressed out the empty hash table buck-

ets, and bounded collisions with an overflow hash table. Our
goal with concise array table (CAT) is to go even further, and
eliminate collisions. Once we have a collision-free mapping
from key to the hash table bucket, we can eliminate the keys
from the hash table array as unneeded.

This makes CATs thinner than CHTs, so they pack better
into cache lines. For example, consider a 4-byte key with a
16-byte payload. Only three of these 20-byte buckets will fit
completely in a cache line – we can fit 3.2 on average, but
then every fourth bucket will straddle a cache-line boundary.
However, as a CAT, the bucket takes up only 16 bytes, and
4 buckets pack cleanly into a cache line.

2.4.1 Avoiding Collisions
Collision avoidance is based on the observation that DBAs

usually design join keys to have dense domains. In fact, for
uniqueness, it is a common practice to assign keys automat-
ically via a serially increasing counter. Ideally, if the keys
were integers from 1 to N , we could map them to positions
1 to N in the hash table bitmap. Even this cannot be an
identity mapping because of skew; we address this further
below. However, CAT can tolerate a fair amount of deviation
from this ideal density and still be effective.
Local Predicates:
Even if the keys were originally dense, after applying local
predicates the resulting keys will be non-dense. CAT will
use 2N bits for the bitmap, where N is the range of the key
values. But only |inner after predicates| entries will be used
in the payloads array. Consider a hash table in which each
bucket originally takes up 128 bits (e.g., an 8-byte key and
8-byte payload). Even if the predicates have a selectivity of
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10%, the CAT bitmap only uses 20 bits per bucket, which is
a small price to pay for eliminating the key (and collisions).
Non-Dense domains: Key domains often have outliers:
values like MAXINT are used to indicate defaults, unknown,
etc. Our general solution is to pick an approximate median
value (during partitioning), and choose a range around it
that is as large as will fit in the memory budget of that
join. Keys within this range are handled via CAT, and other
keys go to the overflow hash table. If this causes too high a
fraction to overflow, we use CHT instead of CAT.
Multi-column keys: With composite keys, even if each
part of the key is perfectly dense, their concatenation is
anything but dense. Each part will be represented as a word-
sized integer, so if the values range from 1 to N , we lose
(word width) - log N bits between parts. We avoid this loss
by tracking the second largest value seen, for each part of the
composite key, during partitioning (on the build side, using
the second largest avoids the MAXINT problem). Then
when inserting into the CAT we concatenate the parts of
each key in such a way that we remove those unused bits.

2.4.2 Avoiding Skew
The partitioning function in partitioning-based hash joins

typically uses bits chosen from the hash value itself. There-
fore, partitioning in hash joins relies on hashing to avoid
skew. For CHT, we partition on the most significant bits of
the hash value.

For CAT, if we use the key directly as the index into the
bitmap, then skew becomes a major concern. If we partition
on the most significant bits, and some local predicate filters
out tuples with high key values, those partitions will have
very few values. If we partition on the least significant bits,
and this is a composite key, the partitioning bits are likely
to come from the last component of the composite key. If a
local predicate reduces the number of distinct values in that
part, the partitioning will have huge skew, leading to poor
multi-threaded scaling.

We solve this problem by applying a bijective hash scram-
bling, as shown below.

� � � ������

Suppose a key is w bits wide. We compute a log P -bit
hash on the most significant w− log P bits of the key, where
P is the number of partitions. We XOR this hash onto the
least significant log P bits. This simultaneously achieves:

• Skew Avoidance: we partition on those log P bits, so
the partitioning is resilient to skew arising from local
predicates.

• No loss in density: The resultant scrambled key is still
w bits wide, so any density in the original key domain
is preserved after scrambling as well.

3. FAST JOINS USING CHTS AND CATS
There is more to fast joins than just employing fast and

concise hash tables. In this section we describe how we
incorporate CHTs into a hash join and make it a part of a
larger query plan.

The build side of hash joins in Blink3 is pretty much what
we described in Section 2.3 and Figure 3. The inner side of
the join – either a scan over a table, or the result of other
operators – is pipelined into the CHT build in parallel.

In Blink3, the probe phase of a join query is executed
with a multi-threaded query plan that has separate scan,
join, and output operators (and Bloom filter, for multi-way
joins), connected in a separate operator chain for each thread.
What flows through the operator chain are work units, which
correspond to 8192-tuple ranges of the input table, called
strides. Each thread picks these strides in work-stealing
fashion to balance work among threads. [20] describes the
query plan in detail.

The scan operators scan one column each, fetching values
only for rows that satisfy previously applied predicates (late
materialization). Each column is stored in a separate file,
and the scan operator reads them via the read() call, one
stride at a time.

Scan results are pipelined to the join operator, which looks
up strides of foreign keys2 in the join hash table and pipelines
results to the output operator.

We next discuss two improvements to this basic plan: early
filtering of outer tuples that will not find join matches, and
pipelined outer partitioning for very large inner tables.

3.1 Early filtering via the CHT bitmap
We saw in the introduction that the hash table payload

seriously affects probe speed, and that 0-byte payload lookups
were very fast. Some recent papers on joins assume that
filtering is performed during the join, and so advocate late
materializing joins [3] . That is, the join just maps each key
to a row identifier (RID), and only at the end of all joins,
just when the payload columns are needed, are the RIDs
mapped to payloads.

In Blink3 we use the CHT (and CAT) bitmaps as Bloom
filters to eliminate non-matching join outers before they enter
the join. In the case of CAT, this is a non-lossy filter, because
a CAT bitmap is collision-free. The bitmap takes up only
two bits (one bit for the map, plus one on average for the
prefix population count) per key, and so is cheaper to probe
than the (key, payload) array.

Foreign keys are first sent to this bitmap as part of the
first DIRA probe (recall the pseudo-code of Section 2; this is
Step 1). If this bitmap lookup goes to a bit that is unset, this
key is definitely not present in the CHT (or CAT). Otherwise,
its PopCount yields an offset into the (key, payload) array
where this key will likely be found.

For multi-way joins (where an outer is joined with multiple
inners), we do this DIRA probe against the CHT bitmaps
of all inners, before doing any join. Figure 5 shows an
example with two joins. The cumulative filtering effect of
both joins is applied before we look up into either CHT array.
This provides robustness to poor join ordering, because join
ordering only affects the number of probes into the bitmap,
not (in a major way) the number of probes into the arrays.

3.2 Pipelined Partitioning
Joins in Blink3 generally do not partition the outer. But

partitioned probes can be helpful for extremely large or wide
inners. In these cases, we partition the outer into batches.
This probe phase proceeds as shown in Figure 4. Each
thread reads strides of tuples from the outer table (in work-
stealing fashion). Since Blink3 is a column store, we do
partitioning only on the foreign key columns, within each

2 As a convenience, we use foreign keys as a short form to
refer to the join columns of the outer table.
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Figure 4: The pipelined partitioned join with local partitioning and barriers

�����

���	


�����

������������

�����

���
��������

������

���
�����	

�����

���	�

�����

���������	�

Figure 5: Execution plan for a query with two joins.

stride. At this point we have not even materialized other
outer columns.

We use a fairly standard radix partitioning (compute his-
togram, then partition, as in [18]). Our strides are about 32K
tuples, so we have not found TLB misses to be significant.

But we do no hash table probes at this point. Instead,
we buffer up many outer strides, so that when we do the
lookups, partition by partition, the hash table access has
good temporal locality. This continues until the buffered
strides reach the memory budget. At that point, all threads
enter a barrier. Then each thread repeatedly picks a partition
(via work-stealing) and does lookups for that partition.

We need a second barrier at the end, to departition. This
brings join payloads back into the original tuple order, which
is the order in which columns other than the foreign key are
ordered, since we did not partition those other columns.

4. EVALUATION
We now evaluate the benefits of CHT and CAT, and our

hash join using them. Our goal is to quantify the performance
as well as the memory consumption.

We compare five hash joins. Two use CHT and CAT,
implemented in Blink3 in a hash join with partitioned inner
and non-partitioned outer. Two are the leading in-memory
hash joins from [6] : NPO is a non-partitioned hash join
and PRHO is a partitioned hash join. We use the code
and driver graciously made available on the author’s website
(http://www.systems.ethz.ch/node/334). Those two hash
joins use the chaining-based hash table of [8] , enhanced by

[6] to optimize it for the hardware. Last is NPO-I, which
takes the NPO class from this codebase and integrates it
into Blink3, to avoid materializing the join outers. We have
also compared with Google SparseHash and DenseHash, and
found them to be dominated on both speed and memory
usage (these full results are available at [1]).

It must be noted that NPO and PRHO do not perform a
complete join: the driver from [6] only computes a total count
of the number of join matches (across all foreign keys), and
neither accesses nor materializes join payloads. In contrast,
in Blink3 the join operator materializes the join payloads

and feeds them to an output operator that verifies that the
join result is correct (for one tuple in every 8192 tuples).

Further, the driver for NPO and PRHO keeps the inner and
outer table in contiguous in-memory arrays, and thus avoids
the read system call as well as associated copies. Blink3 uses
a scan operator to read input column values from files and
to pass them to the join operator. All results are from warm
runs, with both the inner and outer fitting in the file system
cache (except in Section 4.4).

As a result, we see that NPO is about 2X faster than
NPO-I. We believe that joins mostly do access join payloads,
and thus NPO-I is a better measure of performance of the
NPO hash table.

All but one experiment are run on a 2-socket machine
with 8-core Intel Sandy Bridge-EP (E5-2665, 2.4 GHz) pro-
cessors and 256GB of RAM, sufficient memory that there
is no virtual memory paging, irrespective of memory usage.
For the experiment with the outer streaming from disk, we
use a 2-socket machine with 4-core Intel Xeon processors
(X5570, 2.93 GHz), 64GB of RAM, and a Fusion-IO array of
SSDs (ioExtreme Pro) that gets 545 MB/s sequential read
bandwidth (measured via dd).

We have found that hyper-threading speeds up probes by
hiding access latencies. This corroborates the results of [8] .
But build speed is actually hurt by using more threads than
cores, so for build in CHT and CAT, we use 16 threads,
matching the number of physical cores. For NPO-I, we use
only 8 threads, which gave it best performance. For the
probe phase, we use 32 threads for all three algorithms. For
NPO and PRHO, we use 32 threads uniformly, as the driver
does not have distinct build and probe phases.

4.1 Savings in Memory Consumption
We first measure the memory usage of the various algo-

rithms, using a 2-table equijoin query:

SELECT Inner.payload FROM Outer, Inner

WHERE Outer.fkey = Inner.key

The key is always an 8-byte integer. The payload is set to
8 bytes by default. Section 4.2 presents some results with
24-byte and 0-byte payloads.
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Figure 6: Memory usage for varying inner sizes (Table 1 has full numbers).

We use two cardinalities for the outer: 1E9 and 1E8 tuples.
The inner cardinality is varied from 1E2 to 1E8 tuples. This
range includes very small inners, in contrast to prior work
[6, 8, 11] that mainly looks at large inners. In our experience
with customer workloads, small inners are common, especially
after applying predicates. In general, it is important for a join
implementation to do well across a spectrum of cardinalities.

The values for the inner key are chosen as random (but
unique) integers, with values in a range that is twice as large
as the cardinality. This is to challenge CAT with non-dense
key distributions. Each outer tuple finds exactly one match
in the hash table. We choose foreign key values uniformly
from among all the values in the inner. Section 4.5 studies
variations, including even sparser key distributions, skew in
the foreign key distribution, and selective joins.

We measure memory usage in terms of peak resident mem-
ory size (RSS), as measured by ps. We ran a script that
issued “ps -C command -o rss” as each query ran, once
every 100 ms, and recorded the largest value seen.

Dependence on Inner Size

Figure 6 plots the memory usage for the various joins, for
each inner size, with an 8-byte payload. For small inners, the
CHT, CAT, NPO-I memory usage is barely visible, but Table
1 has detailed numbers. For inners up to 1E7, CHT and CAT
use < 320MB (and < 30MB up to 1E6 inners), in contrast
to the 10s of GB that NPO and PRHO use. Even at 1E8
inner, CHT and CAT use 1/6th the memory of NPO, and
1/10th to 1/15th that of PRHO. The PRHO memory usage
is dominated by the data structures used for partitioning the
outer, so it varies little with the inner size.
Comparing to NPO-I: NPO’s memory usage is high be-
cause it keeps the outer in an array. But this is not intrinsic
to the NPO hash join: so NPO-I implements the NPO join,
but with the outer streamed through. Still, NPO-I memory
usage is 3X to 4X more than CHT’s. This is due to two fac-
tors. First, the NPO hash table has a 16-byte overhead per
bucket, for storing a pointer and a latch. Second, by design
NPO is a chaining hash table, and there is significant space
fragmentation from the overflow chain. At the 1E8 inner
with 1E8 outer, the hash table and its overflow dominates
the memory usage, so NPO-I is not that much better than
NPO.

The RSS for CAT and CHT does increase with inner size,
as we expect, since it is dominated by the inner. Table 1 also
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Figure 7: Memory usage for varying outer sizes (in-
ner has 10M rows).

lists the exact hash table sizes for CAT and CHT; it is about
half the RSS value. This is because we partition the inner,
and thus have to hold in memory both the partitioned inner
and the hash tables we are building. This can be avoided in
low-memory environments by building hash tables on a few
partitions at a time, or by spilling partition blocks.

We notice that the memory usage of CAT is always less
than that of CHT. This is due to the keys that CHT stores.

Dependence on Outer Size

Our key argument against outer partitioning is that it makes
the memory usage grow with the outer size. We now plot the
memory usage as a function of outer cardinality, in Figure 7.
We fix the inner cardinality to 1E7. Notice that PRHO and
NPO have a very steep upward slope, due to the intermediate
state needed for partitioning the outer. CHT, CAT, and
NPO-I memory usage is mostly independent of the outer,
suggesting that Blink3 is pipelining the outer tuples well.

4.2 Is there a Trade-off in Join Speed?
Next, we turn to join speed. Figure 8 plots the query run

times (wall clock) for the different hash joins, for an 8-byte
payload. For CHT, CAT and NPO-I, each bar has two parts:
the lower part is the time for the build phase, and the upper
part is that for the probe phase. The code of [6] does not
separate build and probe timings.
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Figure 8: Query run time for varying inner sizes. For CHT, CAT, NPO-I we break the time into build (below
the bar) and probe phases (above the bar).

As explained earlier, NPO and PRHO do not access pay-
loads, so we plot those on the side (but to the same scale).

Dominance of Joins with Non-Partitioned Outer
Notice that the joins with non-partitioned outer – CHT,
CAT, NPO-I and NPO – do very well, beating PRHO at all
inner sizes except 1E8. PRHO has to partition the full outer,
but at most inner sizes this is not an overall win. The PRHO
times change little with the inner size, because the probes
are always into small per-partition hash tables, and the inner
size only affects the partitioning time, which is dominated
by the outer, anyway.

The only case where PRHO wins is the 1E8 outer joined
with 1E8 inner: here it is 2.6X faster than CAT. This is not
primarily due to probe speed. We see that CAT and CHT
build speed degrades for large inners, much more than probe
speed. CHT and CAT do involve building an extra bitmap,
but our profiling suggests this is not the bottleneck. Rather
it is our inner partitioning and multi-threaded building that
are slow. Since these two are not intrinsic to CHT or CAT,
we hope to improve these in future, possibly applying some
of the optimizations from PRHO.

Overall, these results validate that outer partitioning is
not needed. Even in the case of the 1E8-1E8 join, PRHO
will become slower if the join payloads need to be accessed,
materialized, and fed to a subsequent operator.

CAT, CHT vs NPO-I and NPO
CAT and CHT beat NPO-I in every case, with larger savings
for larger inners (eg, at 1E8 inner, CAT is ≈ 5X faster).

At inners of 1E6 and beyond, CAT is faster than NPO.
This is despite CAT having to do one extra random access
for the bitmap lookup. This validates our hypothesis that
a hash table designed to use a DIRA pattern will not suffer
much from random access. At smaller inners, NPO is the
fastest. Blink3 has a minimum 1.5ns cost per outer row,
which we attribute to the cost of accessing and materializing
the join results, and to the read() system call.

CAT vs CHT
CAT is almost always faster than CHT. Blink3 uses CAT
by default, whenever it can be applied. If the key is not
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Figure 9: Query run time and memory usage for
multi-way joins with CHT (1E9 outer, 1E7 inner).

of numerical type, or the range of values is too high, then
the CAT bitmap can be very large. When this exceeds
the memory budget, we fall back to CHT. We will see in
Section 4.5 that even for sparse key distributions, the CAT
memory usage is much smaller than that of PRHO or NPO.

Alternate payload sizes
We now repeat this query, with 0-byte and 24-byte payloads
(only for CAT, CHT, since NPO and PRHO only support
8-byte key,payload and 4-byte key,payload). Table 1 lists the
memory usage and join speed for these payload sizes. As
we would expect, both memory usage and speed get worse
for the wider payload. For the 0-byte payload, notice that
CAT is especially effective (e.g., using 1/4th the memory and
getting 7X the speed as compared to CAT with the 8-byte
payload, for the 1E9 outer – 1E8 inner join). Here, CAT has
neither key nor payload – it is just a bitmap.

4.3 Memory consumption for multi-way joins
One of our arguments for scanning the outer just once (and

not partitioning it) was for multi-way joins: that it would be
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Figure 10: Effect of IO on probe speed (1E7 inner).

prohibitively memory-intensive to partition the entire outer
once per join. Our next experiment compares 2-way, 3-way,
and 4-way joins. The driver of [6] only does 2-way joins, so
we only study CHT here, to see how its performance fares
as the number of joins in a query increases.

We join a 1E9 outer with one, two, or three 1E7 inners,
on different foreign key columns. Figure 9 plots the query
run time and the peak memory usage (from RSS) as we
vary the number of dimensions being joined. Observe that
the memory usage increases near-linearly with the number
of dimensions, rising by only 200MB per join – an outer-
partitioning scheme would consume much more per join.
Query run time also increases linearly with the number of
joins, since there is no filtration.

4.4 When the outer does not fit
So far, we have seen that non-partitioned outer joins do

well, and have low memory usage. But our results have been
on warm runs, on a machine with enough DRAM to hold
the inner, outer, and all intermediate state in memory.

A natural question is, since we are pipelining the outer,
can we read it from storage? Our next experiment forces the
outer to be on disk and “cold”, by explicitly dropping the file
system cache before every run (via the Linux /proc/sys/vm/-
drop caches – we drop the page cache entries and i-nodes).

Then we rerun the speed experiment (only for CHT and
CAT, because the input needs to be on files). As mentioned
earlier, this uses a different machine, with Fusion-IO SSDs.

Figure 10 compares the time for the probe phase, with
and without the dropping of the file system cache (we ignore
build time because we expect the inner to almost always fit in
memory). Our main observation is that our overall slowdown
in going from outer-on-memory to outer-on-SSD is not that
severe at all. This suggests that the focus on in-memory joins
should shift away from trying to keep the outer in memory.
Machines with modest memory will be cost-effective for join
performance, especially in shared-nothing systems.

4.5 Sensitivity analysis
Our last set of experiments studies the sensitivity of these

performance results to the number of threads used, and to
the data distribution. We revert back to the 2x8-core Sandy
Bridge machine for this experiment.
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Figure 11: Threads scaling of CHT and CAT (1E9
outer, 1E7 inner)

2X 10X 100X
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Q
u
e
ry

 t
im

e
 (

se
c)

2X 10X 100X
0.0

0.1

0.2

0.3

0.4

0.5

P
e
a
k 

m
e
m

 u
sa

g
e
 (

G
B

) CHT
CAT

Figure 12: Query run time and memory usage at
different key densities (1E9 outer, 1E7 inner).

We first compare the join speed as we vary the number of
threads. Figure 11 plots the query speed as we vary the
number of threads used, for a 1E9 (outer) – 1E7 (inner)
join, with 8-byte payloads (the numbers for other sizes were
similar). We normalize the speed by the number of threads,
so perfect scaling would be a horizontal line. For CAT,
CHT and PRHO, the scaling is good until 16 threads, which
matches the number of physical cores, but we do see some
benefits beyond that as well.

Speed of CAT at different densities

Next we vary the density of the join key values. Until now,
we chose the join keys as uniform random integers, in a range
twice as large as the inner cardinality. Now, we consider
joins where the range is 10X and 100X the inner cardinality.
Figure 12 plots the speed and memory consuption of both
CHT and CAT. We use a 1E9 outer and a 1E7 inner. As
expected, CHT is little affected by sparser keys. CAT does
slow down slightly, and its memory usage does go up, because
its bitmap size is proportional to the range of key values.
Even at 100X density, CAT consumes less than 500MB.

Effect of Skew: We now consider skewed foreign key
distributions. We reran the query speed experiments on
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Figure 14: Join speed at different join selectivities.

data generated with a Zipfian distribution for the foreign
key column Figure 13 compares the query speed for varying
inner sizes, with and without skew. The main effect of skew
is to make large inners behave more like small inners, because
the hash table entries for frequent join keys fit well in cache.

Effect of Join Selectivity: So far in all our joins every
outer tuple finds a match. Now we turn to selective joins,
where the CHT and CAT bitmap is used to filter out foreign
keys early, without visiting the array of keys and payloads.
Figure 14 plots the probe time for CHT, CAT, and NPO-I as
we vary the join selectivity from 0 to 100%. We observe a 40%
speedup at 0% selectivity, compared to at 80% selectivity.
Notice also that 100% selectivity yields slight speedup over
80% selectivity, due to better branch prediction.

5. RELATED WORK
Join processing is one of the most important data man-

agement operations. Hence, it is a very old and long studied
topic. Hash joins were pioneered in the 1980s [12, 10] , and
have been implemented in almost all DBMSs since then, and
undergone numerous improvements. For example, Microsoft
SQL Server 2000 starts using an in-memory hash join and
gradually transitions to grace hash join, and recursive hash
join, depending on the size of the build input [2] .

In-memory joins have seen much recent attention, espe-
cially with column stores. MonetDB pioneered this trend
[17] , introducing the radix partitioned join algorithm, and
pointing out the potential of optimizing for cache and mem-
ory. This style of partitioning has been used in many subse-
quent papers, including [11] and [5] .

Blanas et. al [8] were the first to observe that non-
partitioned joins work just as fast as partitioned joins, espe-
cially on hyper-threaded machines, and that they are much
simpler. CHT and CAT can be applied for both partitioned
and non-partitioned joins. But in this paper we have pointed
out additional challenges: for partitioned joins, the difficulty
of fitting the entire outer in memory, and for non-partitioned
joins: estimating the hash table size during builds (and the
resize it introduces if mis-estimated), and the problem of
build parallelism. We think our technique of partitioned
build and non-partitioned probe can be applied to other
hash table data structures as well, besides CHT and CAT.

Cuckoo hashing [19] is a powerful way to avoid hash table
collision, and still get high fill factors. Like CHT, a cuckoo
hash table probe also involves up to two random lookups.
But both lookups are into a wide data structure (the array
of keys and payloads), whereas for CAT and CHT the first
lookup is into a bitmap. Splash tables [21] place multiple
keys into the same hash bucket to optimize for cache line
accesses. We believe this optimization is complementary to
CHT, and intend to explore this in future.

C-Store [3] introduced late materialization of join payloads,
which cuts the size of the join hash table. But one pays after
the join, to fetch payload columns using RID – which will
involve random page accesses and extra buffer pool fixing
costs. We prefer to use Bloom filters, as suggested in R?

[16] , via the CHT bitmap. This cuts the cuts the width
needed for the data structure used for the initial filtering. A
recent enhancement to the NPO hash table [14] uses 16 bits
from the overflow pointer as a filter, to avoid following the
pointer. We don’t need this optimization with CHT because
overflows are much rarer.

Begley et al [7] also study the problem of memory-constrained
joins. Their block nested loop like solution is appealing in the
case that the inner cannot fit in memory, and can complement
our approach of non-partitioned outers.

This paper focuses on hash joins, but sort-merge join is
a powerful alternative, with good recent progress (e.g., [4]).
Generally, hash join allows better memory efficiency because
we can keep the smaller table as the inner and stream the
larger table. A careful comparison between sort and hash
join is an important topic for future work on fast joins.

There is rich recent literature on hardware-conscious joins
[18, 9, 11, 8, 4, 6, 5] . [4] proposes a partitioned join that

minimizes random inter-socket reads, and [15] improves

upon that with a NUMA-aware data shuffling stage. [13]
presents a latch-free hash table design for scalable NUMA-
aware build phase. We think that simplifying hash joins to
a series of DIRA lookups will make hardware acceleration
easier, because we can repeatedly use a gather primitive.

6. CONCLUSIONS
The availability of large, cheap memories has led to a re-

naissance in equijoin algorithms. The focus of the research
literature has mostly been towards improving join speed, and
less attention has been paid to memory consumption. We
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Outer cardinality = 1E8
In- Payload = 8 byte Payload = 24 byte Payload = 0 byte
ner CHT CAT NPOi NPO PRHO CHT CHT CAT
1E2 .01/2.1, .04+.21 .01/1.3, .04+.17 .01/3.0, .00+.23 1.5, .06 3.0, .31 .02/3.7, .04+.23 .01/1.3, .02+.19 .01/5.0e-1, .02+.14
1E3 .01/1.8e1, .04+.21 .01/8.3, .04+.17 .01/2.4e1, .00+.25 1.5, .07 3.0, .34 .02/3.3e1, .05+.24 .01/9.8, .02+.18 .01/5.0e-1, .02+.14
1E4 .01/1.9e2, .04+.21 .01/8.6e1, .04+.17 .01/3.8e2, .00+.24 1.5, .10 3.0, .40 .02/3.4e2, .04+.26 .01/1.1e2, .02+.19 .01/8.0, .02+.14
1E5 .01/1.8e3, .05+.23 .01/8.5e2, .04+.18 .01/3.1e3, .02+.32 1.5, .10 3.0, .38 .02/3.4e3, .05+.28 .01/1.0e3, .03+.19 .01/6.4e1, .03+.14
1E6 .03/1.8e4, .06+.27 .02/8.3e3, .06+.19 .07/2.5e4, .14+.69 1.5, .33 3.0, .39 .07/3.3e4, .07+.37 .02/9.9e3, .04+.21 .01/5.1e2, .04+.14
1E7 .32/1.7e5, .18+.35 .20/8.6e4, .16+.26 .60/3.9e5, .77+.74 2.0, .75 3.3, .43 .79/3.3e5, .30+.50 .16/9.5e4, .11+.31 .03/8.2e3, .08+.15
1E8 3.3/1.8e6, 1.9+.42 2.3/8.5e5, 1.5+.38 5.9/3.1e6, 8.2+1.1 6.3, 3.3 6.0, .73 8.6/3.4e6, 3.7+.61 1.8/1.0e6, 1.5+.37 .82/6.6e4, .48+.23

Outer cardinality = 1E9
1E2 .01/2.1, .04+1.9 .01/1.3, .04+1.5 .01/3.0, .00+2.0 15, .50 30, 3.3 .02/3.7, .04+2.1 .01/1.3, .02+1.7 .01/5.0e-1, .02+1.3
1E3 .01/1.8e1, .04+1.9 .01/8.3, .04+1.5 .01/2.4e1, .00+2.2 15, .59 30, 3.4 .02/3.3e1, .05+2.2 .01/9.8, .02+1.7 .01/5.0e-1, .02+1.3
1E4 .01/1.9e2, .04+2.0 .01/8.6e1, .04+1.5 .01/3.8e2, .00+2.2 15, .76 30, 3.6 .02/3.4e2, .05+2.3 .01/1.1e2, .02+1.7 .01/8.0, .03+1.3
1E5 .02/1.8e3, .04+2.1 .01/8.5e2, .04+1.6 .01/3.1e3, .02+2.9 15, .95 30, 3.6 .03/3.4e3, .05+2.6 .01/1.0e3, .03+1.8 .01/6.4e1, .03+1.3
1E6 .04/1.8e4, .06+2.5 .03/8.3e3, .05+1.7 .07/2.5e4, .15+6.6 15, 2.8 30, 3.8 .08/3.3e4, .07+3.5 .02/9.9e3, .04+2.0 .01/5.1e2, .04+1.3
1E7 .32/1.7e5, .18+3.5 .20/8.6e4, .16+2.4 .61/3.9e5, .74+7.3 15, 5.2 30, 3.7 .80/3.3e5, .29+4.9 .16/9.5e4, .11+3.0 .03/8.2e3, .08+1.4
1E8 3.3/1.8e6, 2.2+4.1 2.3/8.5e5, 1.5+3.1 5.9/3.1e6, 8.7+10 20, 11 33, 4.6 8.6/3.4e6, 3.7+6.0 1.8/1.0e6, 1.5+3.7 .82/6.6e4, .49+2.0

Table 1: Detailed speed and memory usage measurements. Format: RSS in GBs/hash table size in KBs,
Build time + Probe time (seconds). For NPO, PRHO, hash table size and build-probe split is not available.
Hash table for NPO-I excludes the overflow chains. 24-byte data for CAT is similar to CHT.

have introduced two new concise hash tables, and equijoin al-
gorithms using these tables, that significantly reduce memory
consumption compared to leading in-memory join algorithms.
At the same time, their join speed is still competitive.

Traditional partitioned joins that partition the entire outer,
as well as non-partitioned joins that do no partitioning at
build time, have serious limitations in terms of I/Os and
parallelism, respectively. Instead, our equijoin scans the outer
in pipelined fashion, and benefits from build-side partitioning
even when the probe side is non-partitioned.

We hope this paper leads to more research at the boundary
between fully in-memory and on-disk joins. We are excited by
the potential of CHT and CAT, and would like to apply them
in the future to tasks such as group-by. Graph databases are
another area where is a lot of equijoin-like pointer chasing,
and structures such as CAT can be useful.
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