
Scaling Manifold Ranking Based Image Retrieval

Yasuhiro Fujiwara†, Go Irie‡, Shari Kuroyama∗, Makoto Onizuka§†
†NTT Software Innovation Center, 3-9-11 Midori-cho Musashino-shi, Tokyo, Japan

‡NTT Service Evolution Laboratories, 1-1 Hikarinooka Yokosuka-shi, Kanagawa, Japan
∗California Institute of Technology, 1200 East California Boulevard Pasadena, California, USA

§Osaka University, 1-5 Yamadaoka, Suita-shi, Osaka, Japan

{fujiwara.yasuhiro, irie.go}@lab.ntt.co.jp, kuroyama@caltech.edu, oni@acm.org

ABSTRACT
Manifold Ranking is a graph-based ranking algorithm be-
ing successfully applied to retrieve images from multimedia
databases. Given a query image, Manifold Ranking com-
putes the ranking scores of images in the database by ex-
ploiting the relationships among them expressed in the form
of a graph. Since Manifold Ranking effectively utilizes the
global structure of the graph, it is significantly better at
finding intuitive results compared with current approaches.
Fundamentally, Manifold Ranking requires an inverse ma-
trix to compute ranking scores and so needs O(n3) time,
where n is the number of images. Manifold Ranking, un-
fortunately, does not scale to support databases with large
numbers of images. Our solution, Mogul, is based on two
ideas: (1) It efficiently computes ranking scores by sparse
matrices, and (2) It skips unnecessary score computations
by estimating upper bounding scores. These two ideas re-
duce the time complexity of Mogul to O(n) from O(n3) of
the inverse matrix approach. Experiments show that Mogul
is much faster and gives significantly better retrieval quality
than a state-of-the-art approximation approach.

1. INTRODUCTION
Digital images have become widely available due to the

proliferation of web services such as Flickr. Many researchers
have developed image retrieval approaches for multimedia
databases. The goal of image retrieval is to find the im-
ages that semantically match the query image. The key
problem in designing a successful image retrieval system is
how to rank the images in the database to suit the user’s
understanding of semantics, i.e., how to establish the cor-
respondence between image content and semantic tags [2].
The 1970’s saw the first image retrieval approaches based
on keyword annotation [6]. In this paradigm, images in
the database are first annotated with keywords, and then
retrieved via their keywords. Although this keyword-based
approach is still used in many actual image retrieval systems
like Google and Yahoo, these systems suffer from problems

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this li-
cense, visit http://creativecommons.org/licenses/by-nc-nd/3.0/. Obtain per-
mission prior to any use beyond those covered by the license. Contact
copyright holder by emailing info@vldb.org. Articles from this volume
were invited to present their results at the 41st International Conference on
Very Large Data Bases, August 31st - September 4th 2015, Kohala Coast,
Hawaii.
Proceedings of the VLDB Endowment, Vol. 8, No. 4
Copyright 2014 VLDB Endowment 2150-8097/14/12.

such as insufficient text information and semantic inconsis-
tency between the texts and images [21].

The above problems were tackled by content-based im-
age retrieval, which was proposed in the early 1990’s. This
approach is based on the idea of returning the most visu-
ally similar images; the query image is compared to each
database image. This approach takes an example image as
a query (Query-By-Example) and ranks images based on
low-level features such as color and shape where Lp-norms
are typically used as the similarity measure [6]. The advan-
tage of this approach over the keyword-based approach lies
in the fact that feature extraction can be performed auto-
matically and the features are always consistent with the
image’s content [6]. In the database community, several
researchers have proposed efficient techniques for nearest
neighbor search in Lp spaces [19, 24]. However, semantically
adjacent images may not always share the same neighbor-
hood in the Lp spaces. Therefore, these techniques permit
semantic gaps between low-level features and higher-level
concepts [2]. How to bridge the semantic gap remains the
main challenge in content-based image retrieval [2].

He et al. proposed to apply Manifold Ranking instead
of Lp-norms based similarity search for image retrieval [6].
Since semantically similar images are not always adjacent
in the Lp-spaces, results of k-nearest neighbor search can
include semantically different images from query images [2].
For example, if the query image is a blue triangle, returned
images can include a blue square, same color but different
shape. Manifold Ranking computes ranking scores of im-
ages along with their underlying clusters (typically referred
as manifolds). Unlike k-nearest neighbor search, Manifold
Ranking can find semantically relevant images. Manifold
Ranking exploits the property of the underlying clusters col-
lectively revealed by a large number of images [2]. For ex-
ample, images of blue triangles and blue squares construct
different clusters even though they can occupy neighboring
points in the Lp-spaces. Since Manifold Ranking increases
the ranking score of images that share the cluster of the
query node [26], it can reliably evaluate the semantics of
images in the database. Therefore, Manifold Ranking can
suppress the gap between the low-level feature space and the
semantic keyword space [6].

However, one of the most important deficiencies of Man-
ifold Ranking is its speed, especially for large-scale data [8,
21]. Theoretically, the ranking scores of Manifold Ranking
are those that minimize the cost function [25]. Since the op-
timal solution that minimizes the cost function is obtained
by means of an inverse matrix of size n × n, O(n3) time is

341

needed to compute the ranking scores where n is the number
of data points. Moreover, identifying the optimal solution
requires O(n2) space since all the elements in the inverse
matrix must be kept in memory [8]. In this paper, we pro-
pose a fast and memory efficient solution to overcome these
deficiencies of Manifold Ranking.

1.1 Problem Statement
In Manifold Ranking based image retrieval, a k-NN graph

is typically used to model images in the database where
nodes correspond to images [3]. In a k-NN graph, a node
pair has an undirected edge if the two nodes are k-nearest
neighbors. We address the following problem in this paper:

Problem (Top-k search for Manifold Ranking).
Given: k-NN graph, query node, and required number of

answer nodes.
Find: top-k nodes with respect to Manifold Ranking scores

for the query node, efficiently.

While image retrieval is one of the promising applications
of the proposed approach, it can also be used in various
other applications such as music recommendation [1], video
concept detection [23], and biological analysis [20].

1.2 Contributions
In this paper, we propose Mogul, a novel approach that

can efficiently find top-k nodes for Manifold Ranking. In
order to reduce search cost, we (1) exploit sparse matrices
to compute the ranking scores of selected nodes, and (2)
prune low score nodes by estimating upper bounding scores.
Our approach has the following attractive characteristics:

• Efficient: The computation cost of the proposed ap-
proach is O(n), i.e. linear with respect to the num-
ber of images, while the inverse matrix approach re-
quires cubic time O(n3) (Section 4.5). Our experi-
ments demonstrate that the proposed approach is seven
orders of magnitude faster than the inverse matrix ap-
proaches (Section 5.1).
• High accuracy: Although the proposed approach

finds the approximate top-k nodes, it is much more
accurate than the previous approximation approach
[21]; the precision of our approach in finding semanti-
cally similar images is higher than 90% (Section 5.2.1).
Furthermore, our approach provides users with the ad-
ditional option of finding the top-k nodes exactly, thus
matching the inverse matrix approach (Section 4.6).
• Small memory: The proposed approach needs O(n)

space. Mogul requires less memory space than the in-
verse matrix approach, O(n2) (Section 4.5). This indi-
cates that our approach can handle large-scale image
datasets efficiently and effectively.
• Parameter-free: Mogul does not require the user

to set any inner-parameters (Section 4.4) unlike the
previous approaches which impose a trade-off between
computation time and approximation accuracy (Sec-
tion 5.2.1). Our approach provides a simpler imple-
mentation of Manifold Ranking for image retrieval.

The theoretical search cost of Mogul, O(n), is independent
of the number of answer nodes; this indicates that Mogul is
theoretically faster than the inverse matrix approach even if
it computes the ranking scores of all nodes for a query node.

Even though Manifold Ranking has been known to im-
prove the quality of image retrieval, it has been difficult to

apply it to large-scale multimedia databases due to the high
computation cost. The proposed approach, however, can
handle large data sets efficiently and so will improve the
effectiveness of future image retrieval systems.

The remainder of this paper is organized as follows: Sec-
tion 2 describes related work. Section 3 overviews the back-
ground. Section 4 introduces the main ideas and details our
approach. Section 5 reviews the results of our experiments.
Section 6 provides our conclusions.

2. RELATED WORK
Manifold Ranking is a graph-based ranking algorithm.

Unlike other graph-based ranking algorithms [4, 5, 13], since
Manifold Ranking can effectively capture the manifold struc-
tures present in Lp spaces, it is successfully being applied
in image retrieval as a distance metric defined on the man-
ifold. The theoretical differences of Manifold Ranking from
the other graph-based ranking algorithms are described in
detail in the original paper of Manifold Ranking [26]. Sev-
eral approaches have been proposed to raise the computation
efficiency of Manifold Ranking.

Zhou et al. exploited the iterative method to enhance the
computation speed of Manifold Ranking [26]. The iterative
method updates scores by a given equation until conver-
gence; their approach recursively updates the ranking score
of each node by utilizing all edges in the k-NN graph. Even
though it iteratively updates scores until convergence, one
common practice is to fix the number of iterations or to
prespecify some termination condition; the scores after ter-
mination differ from the theoretical ones. That is, their
approach approximately computes the ranking scores. If t
is the number of iterations, their approach needs O(nt) time
since the number of edges in a k-NN graph is O(n).

FMR, presented by He et al., is a fast approximation al-
gorithm for Manifold Ranking [8]. Their approach takes ad-
vantage of the block-wise structure and linear correlations
in the adjacent matrix of the k-NN graph. In a precom-
putation process, they partition the graph by spectral clus-
tering [3]. Next, for the adjacency matrix, they use a low-
rank approximation such as SVD to effectively approximate
the graph. FMR significantly outperforms the iterative ap-
proach by Zhou et al. [26] in terms of computation time. If
spectral clustering is effective in partitioning the graph and
there are no edges between partitions, the time complexity
of FMR is O(n2/N) where N is the number of clusters. This
is because the adjacency matrix is partitioned into N blocks
of n/N ×n/N size. However, the spectral clustering used in
FMR is essentially a balanced (normalized) cut, so it may
not work well for those datasets whose distributions of par-
tition sizes are highly unbalanced. If the graph is not well
partitioned by spectral clustering, their approach must hold
the n× n matrix in the worst case. This indicates that the
time complexity of FMR is O(n3).

EMR is the state-of-the-art approximation approach by
Xu et al.; it precomputes an anchor graph to enhance the
computation speed of Manifold Ranking [21]. The anchor
graph approximately represents each node on the manifold
as a linear combination of weights to nearby anchor points.
Anchor points are selected from the data points by using
the k-means algorithm. They compute weights to anchor
points of each data point from Nadaraya-Watson kernel re-
gression with the Epanechnikov quadratic kernel. Since the
data points outnumber the anchor points, the anchor graph

342

Table 1: Definition of main symbols.
Symbol Definition

n Number of nodes in the k-NN graph
ui i-th node
uq Query node
u′i i-th node after node permutation
x′i Approximate score of node u′i
x′i Upper bounding estimation of score x′i
x′Ci

Upper bounding estimation of cluster Ci

N Number of clusters in the graph
Ni Number of nodes in the i-th cluster
ci Lowest node number in cluster Ci

x n×1 ranking score vector
q n×1 query node vector, qq = 1 and 0 for others
A n×n adjacency matrix of the k-NN graph
P n×n node permutation matrix
L Lower triangular matrix
D Diagonal matrix
U Upper triangular matrix
Ci i-th cluster

can be regarded as a low-rank approximation of the adja-
cency matrix. Therefore, they rewrite the equation of score
computation by the low-rank approximation by using the
Woodbury formula. As described in their paper [21], the
computation cost of EMR is O(nd + d3) and memory cost
is O(nd) where d is the number of anchor points. Their
experiments showed that EMR is superior to the iterative
approach [26] and FMR [8] in terms of computation speed
and approximation quality.

3. PRELIMINARY
We formally define the notations and introduce the back-

ground of this paper. Table 1 lists the main symbols and
their definitions. In Manifold Ranking, a dataset is mod-
eled as a k-NN graph [3]. Each node in this graph rep-
resents a data point, and two nodes are connected by an
undirected edge if they are k-nearest neighbors. The num-
ber of k-nearest neighbors is usually set to 5-20 [10], and
there is no loop in the k-NN graph [26].

The ranking task can be formulated as follows: given a set
of nodes U = {u1, u2, . . . , un} ⊂ Rm and assuming uq ∈ U
is the query node; rank the nodes according to their scores
to the query node. Let A ∈ Rn×n be the adjacency matrix
of the k-NN graph. In the k-NN graph, the number of edges
is O(n) and A is symmetric. Normally, edge weight can be
defined by the heat kernel [21]; Aij = exp{−d2(ui, uj)/2σ

2}
if there is an edge linking node ui and uj otherwise Aij = 0.
Function d(ui, uj) is a distance metric of ui and uj defined
on U in Lp spaces, usually the Euclidean distance [26]; σ is
the standard variation of the function scores. Note that sum
of each row/column in the adjacency matrix can be smaller
or larger than 1 from the definition. Let q be the n × 1
column vector of zeros with the element corresponding to
query node uq set to 1, i.e., qq = 1. In addition, x : U→ R
is a ranking function that assigns ranking score xi to node
ui. In Manifold Ranking, the ranking scores are defined as
the optimal solution that minimizes the cost function. The
cost function of x is defined as follows [25]:

f(x)=1
2

∑n
i,j=1Aij‖xi/

√
Cii−xj/

√
Cjj‖2+(1

α
−1)
∑n
i=1‖xi−qi‖

2(1)

In Equation (1), C is a diagonal matrix where Cii =
∑n
j=1Aij ,

and α is a constant parameter 0 < α < 1. The first and
second terms correspond to the smoothness and the fitting
constraint, respectively. The smoothness constraint ensures

that nearby nodes have close ranking scores. The fitting con-
straint ensures that the ranking result fits the query node.
The optimal ranking result is achieved when f(x) is mini-
mized: x∗ = argminx f(x). Differentiating f(x) with respect

to x, ∂f
∂x

∣∣
x=x∗

= x∗−C−
1
2 AC−

1
2 x∗+

(
1
α
− 1
)

(x∗ − q) = 0.

Therefore, (I − αC−
1
2 AC−

1
2)x∗ = (1 − α)q where I is the

identity matrix. Consequently,

x∗ = (1− α)(I− αC−
1
2 AC−

1
2)−1q (2)

In Equation (2), (I − αC−
1
2 AC−

1
2)−1 is inverse matrix of

(I−αC−
1
2 AC−

1
2). Equation (2) indicates that the ranking

score computation in Manifold Ranking involves the matrix
inversion operation. However, this approach is not efficient
in terms of computation time if the top-k nodes are the tar-
get. This is because it takes O(n3) time to obtain the inverse
matrix [8, 21]. In addition, to find top-k nodes, the rank-
ing scores of all nodes must be computed even though the
scores of low ranking nodes are not needed in top-k search.
Moreover, this approach requires O(n2) space to hold the in-
verse matrix [8, 16]. Therefore, a fast and memory efficient
solution is essential for large-scale image retrieval [21].

4. PROPOSED METHOD
This section presents our approach, Mogul; it efficiently

finds top-k nodes for Manifold Ranking. Section 4.1 overviews
the ideas that underlie Mogul. That is followed by a full de-
scription in Sections 4.2, 4.3, and 4.4. We also theoretically
analyze its performance in Section 4.5. We show that the
proposed approach can exactly identify top-k nodes, mirror-
ing the inverse matrix approach, by slightly modifying the
algorithm in Section 4.6. In Section 4, we follow the original
paper of Manifold Ranking by assuming that the query data
point is in the database [25]; the query node is assumed to be
included in the graph. However, in a real application, user
would be able to select a query from outside the database
[7]. Section 4.6 describes how we handle outside queries.

4.1 Main Ideas
Since the inverse matrix approach needs O(n3) time, Man-

ifold Ranking does not scale for large datasets. In order
to increase the search speed of Manifold Ranking, our ap-
proach, Mogul, exploits the following two ideas: (1) It com-
putes the approximate scores from the sparse matrices ob-
tained by Incomplete Cholesky factorization [15], and (2)
It prunes unnecessary approximate computations by esti-
mating the upper bounding scores to avoid computing the
approximate scores of all nodes. Since each sparse matrix
has O(n) non-zero elements, we drastically reduce the com-
putation cost to O(n) from the O(n3) of the inverse matrix
approach; the cost is linear with respect to the number of
nodes. In addition, our approach achieves higher accuracy
than the state-of-the-art approximation approach, EMR, in
terms of finding similar images since our approach reduces
the approximation error. Moreover, our approach does not
need any user-defined inner-parameters, whereas EMR re-
quires the number of anchor points, d, to be set, which in-
duces a trade-off between computation speed and approxi-
mation quality. That is, our approach is user friendly.

4.2 Approximate Score Computation
We describe here our approach to efficiently computing

the approximate scores for the query node. Section 4.2.1

343

describes how the ranking scores can be rewritten by Incom-
plete Cholesky factorization and thus inverse matrix compu-
tation can be avoided in score computation. Section 4.2.2
describes that enhancing the approximation quality is an
NP-complete problem, and shows our efficient and effective
solution to this problem. Finally, we describe our approach
to computing the ranking scores of selected nodes by using
manifold structures in Section 4.2.3.

4.2.1 Matrix Factorization
Since the ranking score computations of Manifold Ranking

involve the inverse matrix operation with size of n× n, the
inverse matrix approach requires O(n3) time as described
in Section 3. In order to improve the search speed, we ex-
ploit Incomplete Cholesky factorization instead of the in-
verse matrix for ranking score computations. Incomplete
Cholesky factorization decomposes a matrix into the prod-
uct of a lower triangular matrix, a diagonal matrix, and an
upper triangular matrix, where the upper triangular matrix
is the transpose of the lower triangular matrix. The ranking
score is obtained by exploiting forward substitution for the
lower triangular matrix and, analogously, back substitution
for the upper triangular matrix [16]. Incomplete Cholesky
factorization has the property that the factorized matrices
have O(n) non-zero elements [15]. This implies that (1) we
can significantly reduce the search cost to O(n), and (2) the
proposed approach needs O(n) space which is much smaller
than the O(n2) required by the inverse matrix approach.

This section shows how the definition of ranking scores
can be rewritten by Incomplete Cholesky factorization. In
our approach, we permute nodes in the graph to enhance
the approximation quality. Let P be a permutation matrix,
the adjacency matrix of k-NN graph A is transformed into
matrix A′ in the form of A′ = PAPT where matrix PT is
the transpose of P [16]. Similarly, the diagonal matrix C
is transformed as C′ = PCPT . Let u′i be the i-th node
after node permutation. The n×n permutation matrix P is
an orthogonal matrix where every row and column contains
precisely a single 1 with 0s everywhere else, and Pij = 1
indicates that the j-th row is permuted into the i-th row.
Details of how to obtain matrix P are shown in Section 4.2.2.

By utilizing matrix P, the ranking score computation de-
fined in Equation (2) can be rewritten in the following ma-
trix form since I = PT IP and PT = P−1 [16]:

x∗=(1−α)(I− αC−
1
2 AC−

1
2)−1q

=(1−α){PTIP−αPT(C)−
1
2 PPTAPPT(C)−

1
2 P}−1q

=(1−α)PT {I− α(C′)−
1
2 A′(C′)−

1
2 }−1Pq

(3)

Since matrix I, C′, and A′ are all symmetric, matrix {I −
α(C′)−

1
2 A′(C′)−

1
2 } is also symmetric. We utilize Incom-

plete Cholesky factorization to approximate the matrix. In-
complete Cholesky factorization decomposes a matrix into
three matrices; lower triangular matrix L, diagonal matrix
D, and upper triangular matrix U (= LT). More specifi-

cally, we compute LDLT = LDU ≈ {I−α(C′)−
1
2 A′(C′)−

1
2 }.

The approximate scores can be obtained by exploiting for-
ward substitution and back substitution [16]. Let L′ = LD,
x′ = Px, and q′ = (1 − α)Pq where vector x represents
the approximate score vector. From equation (3), we have
L′y = q′ where Ux′ = y. Since matrix L′ is a lower trian-
gular matrix, we can compute the elements of n × 1 vector

y by using forward substitution for L′y = q′ as follows [16]:

yi =

{
q′i/L

′
ii (i = 1)(

q′i −
∑i−1
j=1 L

′
ijyj

)
/L′ii (i 6= 1)

(4)

Similarly, the elements of n × 1 vector x′ can be obtained
by back substitution for Ux′ = y as follows [16]:

x′i =

{
yi/Uii (i = n)(
yi −

∑n
j=i+1 Uijx

′
j

)
/Uii (i 6= n)

(5)

Forward substitution starts with y1 and, having solved for
it, the result is used to solve y2, and so on. Back substitu-
tion proceeds backwards, first x′n is computed then that is
substituted back to solve x′n−1, with repetition for x′1. Since
matrix product Px (= x′) is the row permuted vector of x,
approximate scores of node ui, xi, can be easily obtained
from an element of vector x′ as xi = PTijx

′
j . This indicates

that vector x′ corresponds to the approximate scores; ele-
ment x′j corresponds to the approximate score of node u′j
after node permutation.

Equations (4) and (5) imply that we can compute the
approximate scores for query node uq if we precompute
the Incomplete Cholesky factorization of the matrix {I −
α(C′)−

1
2 A′(C′)−

1
2 }. We provide the following lemma to

show the time complexity of our approximation:

Lemma 1 (Score computation cost). We need O(n)
time to compute the approximate scores of all nodes by using
Incomplete Cholesky factorization.

Proof Since (1) C′ and I are diagonal matrices of size
n × n, and (2) node-permuted matrix A′ clearly has O(n)
non-zero elements, the number of non-zero elements of ma-

trix {I − α(C′)−
1
2 A′(C′)−

1
2 } is O(n). In addition, Incom-

plete Cholesky factorization has the property that the fac-
torized matrices hold O(n) non-zero elements [15]. There-
fore, the resulting matrices L, D, and U all have O(n) non-
zero elements. Since matrix D is diagonal and L′ = LD, the
number of non-zero elements in matrix L′ is also O(n). As
shown in Equation (4) and (5), forward and back substitu-
tions compute the elements of vector x′ by exploiting each
element in matrix L and U′ only once. Therefore, forward
and back substitutions need O(n) time. Since the approxi-
mate score of a node can be obtained from the corresponding
element of vector x′, it requires O(n) time to compute the
approximate scores of all nodes. 2

As described in Section 3, the exact ranking scores can
be obtained as the optimal solution that minimizes the cost
function defined by Equation (1). However, the solution
involves the high computation cost of O(n3). Lemma 1 in-
dicates that we can drastically reduce the computation cost
from O(n3) to O(n), which is linear with respect to the num-
ber of images. In the next section, we introduce our opti-
mization approach that enhances the approximation quality
by properly permuting the nodes in the graph.

4.2.2 Optimization
The previous section proposed the approximation approach

to exploit Incomplete Cholesky factorization where we com-

pute the approximation as LDU ≈ {I−α(C′)−
1
2 A′(C′)−

1
2 }.

However, the obtained ranking scores are different from those
yielded by the inverse matrix approach. To enhance the ap-
proximation quality, we permute the nodes of the adjacency
matrix before Incomplete Cholesky factorization. In other

344

words, we permute rows/columns in adjacency matrix A to
reduce the approximation error. By properly permuting the
nodes, we can reduce the approximation error. Unfortu-
nately, determining the node permutation that reduces the
approximation error is an NP-complete problem.

Theorem 1 (Permutation problem). Setting the node
permutation that minimizes the approximation error in In-
complete Cholesky factorization is NP-complete.

Proof We prove the theorem by a reduction from the
minimum fill-in problem [22]. We transform instances of
the minimum fill-in problem into instances of the permuta-
tion problem as follows: for the graph of the minimum fill-in
problem, we create the adjacency matrix A. For node elim-
ination ordering, we create the permutation matrix P, and
then the approximation error for the chordal graph. As a
result, it is easy to show that there exists a solution to the
minimum fill-in problem that has the minimum number of
edge additions if and only if there exists a solution to the
permutation problem with minimum approximation error in
Incomplete Cholesky factorization. Therefore, the permuta-
tion problem is trivial in NP. 2

Before detailing our solution, we here explain why In-
complete Cholesky factorization is called “incomplete”. Let

W = {I − α(C′)−
1
2 A′(C′)−

1
2 }. Matrix L (= UT) and D

can be computed as follows [15]:

Lij =

0 (i<j, i>j∩Wij =0)
1 (i=j)(
Wij−

∑j−1
k=1LikLjkDkk

)
/Djj (i>j∩Wij 6=0)

(6)

Dij =

{
0 (i 6=j)

Wij−
∑j−1
k=1 L

2
jkDkk (i=j)

(7)

Equation (6) indicates that, if an element in matrix W is
zero, the corresponding element in L is also zero, i.e., Lij = 0
if Wij = 0. This is the origin of incomplete; matrix L is lim-
ited to a particular sparsity pattern, the same as the pattern
of matrix W. Without this limitation, we can exactly com-
pute the ranking scores from Equation (6) and (7) [15]. This
implies that approximation error is expected to be large as
many elements are forced to be zero in Incomplete Cholesky
factorization. In addition, Equation (6) and (7) indicate
that elements in matrix L and D are obtained from the
left-side elements in the matrices. Therefore, elements in
the matrices are likely to be zero as left-side elements are
sparse; if all the left-side elements are zero, the elements
must be zero. Our approach is based on these observations;
we reduce the numbers of non-zero elements that are forced
by the limitation to be zero by letting the left-side elements
of matrix W be sparse.

Algorithm 1 shows the permutation algorithm that en-
hances the approximation quality by obtaining the left-side
sparse matrices. We exploit the property that the mani-
folds are locally separated and multiple data points in each
manifold are locally connected to each other [26]. In this al-
gorithm, N is the number of clusters in the graph, Ni is the
number of nodes in the i-th cluster Ci, and e(u) is the num-
ber of within-cluster edges of node u. The algorithm first
initializes permutation matrix P to a zero matrix (line 1).
It computes the clusters of the graph by the state-of-the-art
clustering approach by Shiokawa et al. [17] (line 2). Their
approach is more efficient and effective than other clustering
approaches as reported in [17]. It divides the graph into clus-
ters so as to increase the number of within-cluster edges. In

Algorithm 1 Optimization
Input: given graph
Output: permutation matrix
1: P = 0;
2: divide the graph into clusters C1,C2, . . . ,CN−1 by the graph clus-

tering approach by Shiokawa et al. [17];
3: create new empty cluster CN = ∅;
4: for i = 1 to N − 1 do
5: remove nodes that have cross-cluster edges from Ci;
6: append the removed nodes to CN ;
7: end for
8: k = 1;
9: for i = 1 to N do

10: P = ∅;
11: for j = 1 to Ni do
12: ul = argmin(e(u)|u ∈ Ci\P);
13: Pkl = 1;
14: append node ul to P;
15: k = k + 1;
16: end for
17: end for
18: return P;

other words, their approach is expected to reduce the num-
ber of cross-cluster edges. Note that the number of clusters
is automatically determined. Our approach then removes all
the nodes that have cross-cluster edges and appends them
to the N -th cluster CN (lines 3-7). As a result, only nodes
included in CN have cross-cluster edges. That is, a node
must have only within-cluster edges if the node is included
in Ci; i = 1, 2, . . . , N − 1. It finally selects clusters one by
one from C1 to CN and determines the elements in the per-
mutation matrix by arranging nodes in each cluster based
on the numbers of within-cluster edges (lines 8-17). Since
the algorithm arranges nodes in ascending order of within-
cluster edges, the left-side elements in matrix W are ex-
pected to be sparse. As a result, we can reduce the numbers
of elements forced to be zero as set by Incomplete Cholesky
factorization. Thus, our permutation approach can enhance
the approximation quality.

While the permutation approach is designed to reduce the
approximation error, this approach has an additional ad-
vantage; we can avoid computing the approximate scores
of all nodes by skipping unnecessary nodes. The next sec-
tion shows this advantage in detail. The following lemma
describes the cost of obtaining the matrices:

Lemma 2 (Precomputing cost). Our approach needs
O(n) time and O(n) space to compute matrices L and D.

Proof In order to obtain the node permutated matrices,
we first exploit Algorithm 1 to compute matrix P and then
apply Incomplete Cholesky factorization for the graph. The
computation cost of Algorithm 1 is O(n). This is because
(1) the computation cost of the graph clustering approach
is linear to the number of edges in the graph [17], (2) we
check all the edges to obtain the node permutation matrix
after dividing the graph into clusters, and (3) the number of
edges is O(n) in the k-NN graph. In addition, as shown in
Equation (6) and (7), elements in matrix L and D can be
computed from the left-side elements in the matrices. Since
the number of edges connected to a node is constant in the
k-NN graph, the computation cost to obtain matrix L and D
is linear with respect to the number of nodes in Equation (6)
and (7). In addition, the memory cost to hold matrix L and
D is O(n) since the numbers of non-zero elements in matrix
L and D are O(n). As a result, we need O(n) time and O(n)
space to obtain matrix L and D. 2

345

This lemma indicates that we can efficiently compute ma-
trix L and D from the given graph. Note that all the pro-
cesses to compute matrix L and D are independent of the
query node. Therefore, we can precompute matrices L and
D before commencing the search process; we can flexibly set
query node and the number of answers in accordance with
user demand after the precomputing process.

4.2.3 Skipping Unnecessary Computations
As described in Section 4.2.1, we can find the answer nodes

by applying Incomplete Cholesky factorization. This ap-
proach employs forward and back substitutions for the fac-
torized matrix. However, since previously computed scores
are needed in forward and back substitutions, this approach
cannot limit the score computations to selected nodes. This
section introduces an approach that computes the approxi-
mate score of selected nodes to efficiently find top-k nodes.

As we discuss in this section, matrix L has a particular
non-zero pattern due to the property of underlying manifold
structures in real datasets [26]. In order to realize efficient
search, we utilize the particular non-zero pattern to skip the
approximate score computations that are unnecessary in ob-
taining the scores of selected nodes. This implies that we
can efficiently find answer nodes by using manifold struc-
tures. In this section, we first describe that matrix L has
the particular non-zero pattern. Next, we show a partic-
ular non-zero pattern of vector y. We then introduce our
approach to computing the approximate score of selected
nodes. In this section, we assume that node u′q corresponds
to the query node after node permutation and node u′q is
included in cluster CQ. Note that CQ = CN if node u′q is
included in cluster CN . We introduce the following property
of matrix L yielded by the permutation approach:

Lemma 3 (Zero elements in matrix L). In matrix
L, Lij = 0 if (1) node u′i and u′j lie in different clusters and
(2) neither node u′i nor u′j are included in CN .

Proof If node u′i is not included in cluster CN , the
node must have only within-cluster edges as described in
Section 4.2.2. Therefore, if nodes u′i and u′j are included
in different clusters, we have W ′ij = 0 in matrix W. Since
matrices W and L have the same sparsity pattern due to
the property of Incomplete Cholesky factorization, we have
Lij = 0 if the corresponding element, Wij ,= 0, which com-
pletes the proof. 2

Lemma 3 indicates that elements among the first N − 1
clusters must be 0 in matrix L; matrix L has non-zero pat-
tern of singly bordered block diagonal [16]. In Section 5.2.2,
we show examples of matrix L in real datasets. In addition,
by exploiting Lemma 3, we can suppress the precomputa-
tion time by pruning unnecessary computations in matrix L
as demonstrated in Section 5.2.4. We utilize the following
property of vector y which is derived from Lemma 3:

Lemma 4 (Zero elements in vector y). If node u′i
is not included in cluster CQ or CN , the corresponding ele-
ment in vector y must be zero, i.e., yi = 0 if u′i /∈ CQ ∪CN .

Proof The elements of vector y can be obtained by
applying forward substitution for L′y = q′. Since L′ = LD
and D is a diagonal matrix, matrix L′ has the same non-zero
pattern as matrix L. In addition, the q-th element of vector
q′ is a non-zero element; all other elements are 0.

If u′q ∈ CN , we have q′i = 0 for u′i /∈ CN . Therefore,
y1 = 0 from Equation (4). By recursive substitution into
Equation (4), we have yi = 0 for u′i /∈ CN . Otherwise (i.e.,
u′q /∈ CN), we similarly have yi = 0 for u′i ∈ Cj such that
j = 1, 2, . . . , Q − 1 from Equation (4). That is, if node u′i
is included in a lower number cluster than cluster CQ, the
corresponding element in vector yi equals 0. Furthermore,
we have yi = 0 if node u′i is included in cluster Cj such that
j = Q + 1, Q + 2, . . . , N − 1. This is because (1) the corre-
sponding elements in vector q′ are zero and (2) elements in
matrix L are zero between cluster Cj and CQ from Lemma 3.
That completes the proof. 2

Lemma 4 reveals the property of vector y that non-zero
elements in vector y are restricted only in clusters CQ and
CN . That is, an element that corresponds to node u′i must
be zero in vector y if node u′i is not included cluster CQ or
CN . By utilizing this property, we can efficiently compute
the elements in vector y. Similarly, Lemma 3 yields the
following property of the approximate score vector x′:

Lemma 5 (Independency in vector x′). If we have
the elements of vector x′ in cluster CN , the elements of vec-
tor x′ in cluster Ci such that i = 1, 2, . . . , N − 1 can be
computed without recourse to the elements of vector x′ in
Cj such that j = i + 1, i + 2, . . . , N − 1 even though back
substitution is applied.

Proof We assume that nodes u′i and u′j are included
in cluster Ci and Cj , respectively. The elements of vector
x′ are obtained by applying back substitution for Ux′ = y.
Since we have U = LT , Uij = 0 for node u′i and u′j from
Lemma 3. Therefore, it is clear from Equation (5) that
element x′i, which corresponds to node u′i, can be computed
without element x′j by back substitution. 2

Lemma 5 indicates that, if we compute the elements of
vector x′ in cluster CN , we can compute the elements of
vector x′ for arbitrarily selected clusters.

As shown in Lemma 4, vector y has a particular non-zero
pattern. Therefore, in order to compute the approximate
scores of selected nodes after node permutation, we first
compute the scores of vector y for cluster CQ and CN . Next,
we compute elements of the approximate score of vector x′

for cluster CN , and then compute the approximate score
of the selected nodes based on Lemma 5. Lemma 4 and
5 validate the effectiveness of these steps in computing the
approximate scores of selected nodes.

4.3 Upper Bounding Estimation
In order to perform efficient top-k search, we estimate the

ranking scores of a cluster to select answer-likely nodes. If
the estimation indicates that the cluster has an answer-likely
node, we compute approximate scores for all nodes in the
cluster. Otherwise, we prune the cluster, which has low score
nodes, without computing the approximate scores. The ad-
vantage of the estimation approach lies in finding the top-k
nodes exactly in terms of approximate scores even though it
uses estimation. This is because we estimate upper bound-
ing approximate scores; answer nodes cannot be pruned by
the estimation since they have high estimation scores. As
a result, we can safely discard unlikely clusters along with
their score estimations. In this section, we formally intro-
duce the estimation approach and show its theoretical as-
pects. Let x′Ci

(i 6= Q,N) be the estimation of cluster Ci,
x′Ci

is defined as follows:

346

Definition 1 (Upper bound). The upper bounding es-
timation, x′Ci

, is given as follows for cluster Ci such that
Ci 6= CQ and Ci 6= CN :

x′Ci
= Xi(1 + U i)

Ni−1 (8)

In Equation (8), Xi and U i is defined as follows:

Xi =
∑n
j=cN

U i:j |x′j | (9)

U i = max{|Ujk| : u′j , u′k ∈ Ci and u′j 6= u′k} (10)

where |x′j | is the absolute value of x′j and cN is the lowest
node number in cluster CN , i.e., cN = min{k : u′k ∈ CN}.
In addition, U i:j = max{|Ukj | : u′k ∈ Ci} in Equation (9).

Note that we can precompute U i in O(n) time for each clus-
ter since the number of non-zero elements in matrix U is
O(n). Our estimation is designed for all nodes except for
cluster CQ and CN . This is because (1) the nodes belonging
to cluster CQ are expected to have high approximate scores
[2] and (2) the approximate scores of cluster CN are needed
for the score computations of the nodes in other clusters
as shown in Lemma 5. In order to describe the theoreti-
cal property of the cluster estimation x′Ci

, we introduce the
following estimation of node u′i:

Definition 2 (Node estimation). Let u′i be a node such
that u′i /∈ CQ∪CN . If ci is the lowest node number in cluster
Ci after node permutation, the following equation gives the
estimation of node u′i, x

′
i:

x′i=

{∑n
j=cN

U i:j |x′j | (i=ci+Ni−1)

U i
∑ci+Ni−1
j=i+1 |x′j |+

∑n
j=cN

U i:j |x′j | (otherwise)
(11)

For the estimation x′i, we have the following lemma:

Lemma 6 (Node estimation). We have x′i ≥ x′i for
node u′i such that u′i /∈ CQ ∪ CN .

Proof If u′i 6= CQ ∪CN , we have yi = 0 from Lemma 4.
Since U = LT and Ljj = 1 from Equation (6), we have
Ujj = 1. Therefore, from Equation (5), we have the follow-
ing equation for node u′i /∈ CQ ∪ CN :

x′i = −
∑n
j=i+1 Uijx

′
j (12)

If node u′i and u′j are included in different clusters and
u′i, u

′
j /∈ CN , we have Uij = 0 from the property of matrix

L (Lemma 3). Therefore, if i 6= ci +Ni − 1, we have

x′i =−
∑ci+Ni−1
j=i+1 Uijx

′
j−
∑cN−1
j=ci+Ni

Uijx
′
j−
∑n
j=cN

Uijx
′
j

=
∑ci+Ni−1
j=i+1 (−Uij)x′j+

∑n
j=cN

(−Uij)x′j
≤
∑ci+Ni−1
j=i+1 |Uij ||x′j |+

∑n
j=cN
|Uij ||x′j |

≤ U i
∑ci+Ni−1
j=i+1 |x′j |+

∑n
j=cN

U i:j |x′j | = x′i

(13)

Similarly, if i = ci +Ni − 1, we have

x′i=−
∑cN−1
j=ci+Ni

Uijx
′
j−
∑n
j=cN

Uijx
′
j≤
∑n
j=cN

Ui:j |x′j |=x′i (14)

which completes the proof. 2

Lemma 6 indicates that the estimation of each node gives
an upper bounding approximate score. By exploiting the
estimation of each node, we show the following property of
the estimation of cluster Ci:

Lemma 7 (Upper bound). For any node that is in-
cluded in cluster Ci, the corresponding element in vector x′

cannot be larger than the estimation x′Ci
of the cluster. That

is, x′i ≯ x′Ci
, ∀u′i ∈ Ci.

Proof Prior to proving Lemma 7, we prove that the
upper bounding estimations of nodes in the same cluster
are monotonic decreasing in terms of node numbers, i.e.,
x′i ≥ x′i+1 if u′i+1, u

′
i ∈ Ci. From Equation (11), x′i clearly

has a positive value, therefore,

x′i = U i
∑ci+Ni−1
j=i+1 x′j +

∑n
j=cN

U i:j |x′j |

= U ix
′
i+1 + U i

∑ci+Ni−1
j=i+2 x′j +

∑n
j=cN

U i:j |x′j |

= (1 + U i)x
′
i+1

(15)

Since 1 + U i ≥ 1, it is clear that x′i ≥ x′i+1 from Equa-
tion (15). Since x′ci+Ni−1 corresponds to the highest num-

ber node in cluster Ci, we have x′i ≥ x′ci+Ni−1 = Xi; the

estimation of cluster Ci cannot smaller than Xi. The equa-
tion of x′ci+Ni−1 = Xi, along with Equation (15), indicates
that x′i can be regarded as a geometric progression where
Xi is the first term and (1 +U i) is the common ratio. Since
x′ci corresponds to the lowest number node in cluster Ci,

x′i ≤ x′ci = Xi(1 + U i)
Ni−1 = x′Ci

(16)

From Lemma 6, we have x′i ≤ x′i for cluster Ci. Therefore,
we have x′i ≯ x′Ci

, ∀u′i ∈ Ci. 2

Lemma 7 enables us to safely prune unnecessary approxi-
mate computations. We describe our top-k search algorithm
based on this lemma in Section 4.4. The following lemma
indicates the efficiency of the estimation approach:

Lemma 8 (Efficiency of the estimation approach).
If we have elements of vector x′ that correspond to cluster
CN , it needs O(n) time to compute the estimations for clus-
ters such that Ci 6= CQ and Ci 6= CN in the worst case.

Proof From Equation (8), the estimation of a cluster is
computed as Xi(1 +U i)

Ni−1. Since the non-zero pattern in
matrix U (= LT) is the same as matrix W which is obtained
from the given k-NN graph (Equation (6)), it needs O(n)
time to compute Xi from Equation (9) for the clusters. In
addition, since U i can be precomputed, it needs O(n) time
to obtain (1 +U i)

Ni−1 for the clusters where the number of
such clusters is at most n. Therefore, O(n) time is required
to compute the estimations for the clusters. 2

Lemma 8 indicates that we can efficiently prune unneces-
sary score computations in the top-k search process.

4.4 Search Algorithm
Algorithm 2 shows, Mogul, our proposal that finds top-k

nodes for Manifold Ranking. In this algorithm, K and θ are
the set of top-k nodes and the lowest approximate score of
the top-k nodes, respectively. The algorithm sets θ as 0 (line
1) and initializes top-k nodes set K by appending dummy
nodes that have approximate similarity of 0 (lines 2-3). It
next obtains node u′q from the query node (line 4). Since
only the nodes included in cluster CQ or CN have non-zero
elements in vector y (Lemma 4), it computes the elements
of vector y for the nodes by forward substitution (lines 5-
7). As described in Section 4.3, nodes in cluster CQ are
expected to be answer nodes, and, the approximate scores in
cluster CN are required to compute the approximate scores

347

Algorithm 2 Mogul
Input: query node
Output: top-k nodes
1: θ = 0;
2: K = ∅;
3: append dummy nodes to K;
4: obtain node u′q after the node permutation from the query node;

5: for each u′i ∈ CQ ∪ CN do
6: compute element yi of node u′i by Equation (4);
7: end for
8: for each u′i ∈ CQ ∪ CN do
9: compute score x′i of node u′i by Equation (5);

10: if x′i ≥ θ then
11: v′ = argmin(x′j |u

′
j ∈ K);

12: append node u′i to K;
13: remove node v′ from K;
14: θ = min(x′j |u

′
j ∈ K);

15: end if
16: end for
17: for each Ci such that Ci 6= CQ,CN do
18: compute estimation x′Ci

by Equation (8);

19: if x′Ci
≥ θ then

20: for each u′j ∈ Ci do

21: compute score x′j of node u′j by Equation (5);

22: if x′j ≥ θ then

23: v′ = argmin(x′k|u
′
k ∈ K);

24: append node u′j to K;

25: remove node v′ from K;
26: θ = min(x′k|u

′
k ∈ K);

27: end if
28: end for
29: end if
30: end for
31: for each u′i ∈ K do
32: permute node u′i by permutation matrix P;
33: end for
34: return K;

of selected nodes from Lemma 5. Therefore, it computes the
approximate scores of cluster CQ and CN to update the top-
k nodes set (lines 8-16). It next computes the estimation of
each cluster in turn (line 18). If the estimation of a cluster
is lower than θ, all the approximate scores of the cluster’s
nodes must be lower than θ from Lemma 7. Therefore, it
does not compute the approximate scores for the cluster.
Otherwise, the cluster can contain an answer node, so it
computes the approximate scores of the cluster’s nodes (lines
19-29). It finally obtains the original node number for the
answer nodes from the permutation matrix (lines 31-33).

As shown in Algorithm 2, our search algorithm does not
require any user-defined inner-parameter. As a result, it
provides the user with a simple approach to finding the top-
k nodes with enhanced search speed for Manifold Ranking.

4.5 Theoretical Analyses
In this section, we show the computation and memory

costs of Mogul. Note that the inverse matrix approach needs
O(n3) time and O(n2) space. We introduce the following
theorem to discuss the time complexity of our approach:

Theorem 2 (Computation cost of Mogul). Mogul
requires O(n) time to find top-k nodes.

Proof We find the top-k nodes with the following
three steps: (1) permute the nodes in the graph by Algo-
rithm 1, (2) compute matrix L and D by exploiting Incom-
plete Cholesky factorization, and (3) find top-k nodes by
Algorithm 2. As described in Section 4.2.2, the first and
second steps correspond to the precomputing process of our
approach. The precomputing process requires O(n) time

as shown in Lemma 2. The third step corresponds to the
search process of Mogul. In the worst case, we cannot prune
any node and so must compute the approximate scores of all
nodes. As described in Lemma 8, it needs O(n) time to com-
pute the estimation of the clusters. As shown in Lemma 1,
it takes O(n) time to compute the approximate scores of all
nodes by forward and back substitutions. Therefore, Mogul
takes O(n) time to identify top-k node. 2

We have the following theorem for the memory cost:

Theorem 3 (Memory cost of Mogul). Mogul needs
O(n) space to identify top-k nodes.

Proof As shown in Lemma 2, our approach needs O(n)
space in its precomputing process. In order to compute the
approximate scores, Mogul holds vectors q′, y, and x′ as
described in Section 4.2.1. Since these vectors all have size
of n× 1, it takes O(n) space to hold these vectors. For the
approximate score computations, Mogul exploits matrices
L′, U, and P. Since we utilize Incomplete Cholesky fac-
torization, the numbers of non-zero elements in matrices L′

and U are both O(n). Moreover, in matrix P, the number
of non-zero elements is O(n) even though the size of matrix
P is n × n. In addition, as shown in Definition 2, Mogul
uses value U i:j and U i for the estimation. Since the number
of edges in the k-NN graph is O(n), it needs O(n) space to
hold these values. Therefore, Mogul requires O(n) space. 2

Theorems 2 and 3 show that Mogul has lower time and
space complexities than the inverse matrix approach. The
computation cost of Mogul is, in practice, smaller than the
theoretical cost of O(n) because of the effectiveness of the
estimation approach. In Section 5, the results of extensive
experiments confirm the effectiveness of our approach.

4.6 Extension of Mogul
The previous sections (Section 4.1 to 4.5) focused how

Mogul approximately finds top-k nodes for the query node
that lies in the database. In this section, we briefly describe
the extensions of the proposed approach to (1) exactly find
top-k nodes same as the inverse matrix approach and (2)
handle the query node outside the database.

4.6.1 Exact Top-k Search
In order to exactly identify the top-k nodes, we use Modi-

fied Cholesky factorization [15] instead of Incomplete Cholesky
factorization. Incomplete Cholesky factorization has the
limitation that its sparsity pattern is the same as that of
matrix W as described in Section 4.2.2. If we drop this lim-
itation, Incomplete Cholesky factorization is equivalent to
Modified Cholesky factorization [15]. Since Modified Cholesky
factorization is not an approximation approach as is Incom-
plete Cholesky factorization, we can use it to compute the
exact ranking scores. Let m be the number of non-zero ele-
ments in matrix L obtained by Modified Cholesky factoriza-
tion, we can exactly find the top-k nodes at O(m) time and
O(m) space. While omitting the proof of this property due
to space limitations, we note that it is founded on two theo-
retical properties. The first is that it requires O(m) time to
compute the exact scores of all nodes by Modified Cholesky
factorization. This is because the number of non-zero el-
ements in matrix L is O(m). This property corresponds
to Lemma 1. The second property is that Lemma 3 holds
even if Modified Cholesky factorization is applied; we have

348

Lij = 0 in Modified Cholesky factorization if (1) u′i, u
′
j /∈ CN

and (2) node u′i and u′j are in different clusters. This second
property implies that subsequent lemmas (Lemma 4 to 8)
hold one after the other even if Modified Cholesky factoriza-
tion is applied. Since our optimization approach is designed
to reduce the non-zero elements in matrix L, the extended
version is expected to have sparse data structures.

4.6.2 Out-of-sample Query
In the previous sections, we assumed that the query node

is in the database by following the original paper [26]. How-
ever, in real applications, the user can select a query node
outside the database (out-of-sample query). This section
describes our solution for out-of-sample query.

The naive approach is to compute the k-NN graph by
adding the query node and apply Incomplete Cholesky fac-
torization. This approach, however, is not practical espe-
cially for large data. Our approach is to set the scores in the
query vector q by utilizing the neighbor nodes. We compute
neighbors of the query node and use the neighbors as query
nodes. Since this approach does not add the query node
to the graph, it can efficiently compute the answer nodes
for out-of-sample queries. The theoretical background of
this approach is shown in [7]. In order to efficiently find
the neighbors, we first compute the nearest cluster by uti-
lizing the average feature of each cluster, and then obtain
the neighbors from the nearest cluster. This approach has
O(n) time and space complexities since the computational
and memory costs of obtaining neighbors for the query node
are linear with respect to the number of nodes. This indi-
cates that we can find the answer nodes in O(n) time and
space even for out-of-sample queries.

5. EXPERIMENTAL EVALUATION
We performed experiments to demonstrate the effective-

ness of our approach. In this section, “Mogul”, “EMR”,
“FMR”, “Iterative”, and “Inverse” represent the results of
our approach, the state-of-the-art approximation approach
by Xu et al. [21], the low-rank approximation based ap-
proach by He et al. [8], the iterative method by Zhou et al.
[26], and the optimal solution based on the inverse matrix
computation [25], respectively. Note that EMR is superior
to the other approximation approaches in terms of search
time and approximation quality as reported in [21]. We
used the following standard datasets for image retrieval:

• COIL-100 [14]: This dataset contains images of 100 ob-
jects taken in Columbia University. The objects were
placed on a turntable that was rotated through 360 de-
grees to vary object pose. Images of the objects were
taken at pose intervals of 5 degrees; 72 poses per ob-
ject, resulting in 7, 200 images. We resized all images
to 32 × 32 and used RGB pixel values as the feature
vector, resulting in 3, 048 dimensions.

• PubFig [11]: This dataset consists of 58, 797 images
of 200 famous persons. The images were downloaded
from the Internet using the person’s name as the search
query. We represent each image by using a set of at-
tributes, a state-of-the-art semantic image representa-
tion framework [11]. Each attribute itself is a seman-
tic description of images relevant to human faces; they
were automatically detected by pre-trained classifiers.
We used 73 attributes published by [11].

10
-4

10
-2

10
0

10
2

10
4

10
6

COIL-100 PubFig NUS-WIDE INRIA

W
a
ll

c
lo

c
k
 t
im

e
 [
s
]

Mogul(5)
Mogul(10)
Mogul(15)
Mogul(20)

EMR
FMR

Iterative
Inverse

Figure 1: Search time.

• NUS-WIDE [18]: This dataset was collected by ran-
domly downloading photographs from Flickr through
its public API. The dataset was created by a research
group of National University of Singapore. Images
that were too small or had inappropriate length-width
ratio were removed yielding 267, 465 images. Accord-
ing to the previous paper [18], 150-D color moment
was used as the image feature.

• INRIA [9]: This dataset is a large-scale set of image
features collected by INRIA which is a French national
research institution. The dataset consists of 1, 000, 000
image features extracted from both personal and Flickr
photos, which of each is represented by a 128-D SIFT
descriptor [12].

Note that graph sizes increase in the order of COIL-100,
PubFig, NUS-WIDE, and INRIA. We used the top five nodes
to construct k-NN graphs and set the parameter of Manifold
Ranking α = 0.99 [25, 26]. All experiments were conducted
on a Linux quad 3.33 GHz Intel Xeon server with 32 GB of
main memory. We implemented all approaches using GCC.

5.1 Efficiency of Mogul
We assessed the search time needed for each approach.

Figure 1 shows the results. Since we can precompute ma-
trix L and D without the query node as described in Sec-
tion 4.2.2, we evaluated the efficiency of our search algorithm
(Algorithm 2) in this experiment. The results of Mogul are
referred to as “Mogul(k)” where k is the number of answer
nodes. Since placing too many images on a screen confuses
the user and degrades the user experience, image retrieval
engines present at most 20 images at one time [21]. There-
fore, we set the number of answer nodes k as 5, 10, 15, and
20. We set the number of anchor points, d, to 10 in EMR,
and we exploited SVD as the low-rank approximation for
FMR where the target rank was set to 250. In the iter-
ative method, iteration was terminated when the residual
dropped below 10−4 [21]. The inverse matrix approach can-
not be configured for PubFig and NUS-WIDE datasets since
it has quadratic memory consumption O(n2).

Figure 1 shows that our approach is much faster than the
existing approaches. Specifically, Mogul is seven orders of
magnitude faster than the inverse matrix approach. This
is because the inverse matrix approach needs O(n3) time
as described in Section 3 while the search cost of Mogul is
O(n) as shown in Theorem 2. Even though our approach ap-
proximately finds the top-k nodes unlike the inverse matrix
approach, the accuracy of our approach is high as shown in
the next section. Furthermore, the proposed approach is 50
times faster than EMR, the state-of-the-art approximation
approach. The reasons are twofold. First, Mogul pruned

349

 0

 0.2

 0.4

 0.6

 0.8

 1

10
1

10
2

10
3

P
@

k

Number of anchor points

Mogul
MogulE

EMR

Figure 2: P@k vs. num-
ber of anchor points.

 0

 0.2

 0.4

 0.6

 0.8

 1

10
1

10
2

10
3

R
e

tr
ie

v
a

l
p

re
c
is

io
n

Number of anchor points

Mogul
MogulE

EMR

Figure 3: Retrieval pre-
cision vs. number of an-
chor points.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Number of anchor points

Mogul
MogulE

EMR

Figure 4: Efficiency vs.
number of anchor points.

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

COIL-100 PubFig NUS-WIDE INRIA

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Mogul
W/O estimation

Incomplete Cholesky

Figure 5: Effect of the
pruning approach.

many unnecessary score computations due to the effective-
ness of its estimation approach; the approximate scores of
most nodes were not computed. In addition, as described
in Section 2, EMR theoretically requires O(nd + d3) time.
This computation cost is linear with respect to the number
images n, but cubic to the number of anchor points d. This
is the second reason. As a result, we can find top-k nodes
more efficiently than the previous approaches.

5.2 Effectiveness of Each Approach
The following experiments examine the effectiveness of the

two main techniques of Mogul: approximate score compu-
tation and pruning unnecessary computations.

5.2.1 Accuracy of the Search Results
Following the state-of-the-art approach, EMR, our ap-

proach approximately identifies the top-k nodes to reduce
the search cost. We compared the accuracy of the two ap-
proaches. Note that Xu et al. reported that EMR can find
the answer nodes more accurately than other approxima-
tion approaches such as FMR. We used two types of met-
rics to evaluate the accuracy: P@k and retrieval precision.
P@k is the fraction of answer nodes among the top-k re-
sults that match those of the inverse matrix approach. P@k
takes a value between 0 and 1, and, P@k is 1 if the detected
nodes exactly match those of the inverse matrix approach.
Retrieval precision is the ratio of answer nodes that cor-
respond to the same objects as the query nodes; retrieval
precision corresponds to semantic retrieval quality with re-
gard to ground-truth. Since EMR utilizes the anchor points
to compute the local approximation for each data point as
described in Section 2, the number of anchor points, d, is
expected to have an impact to the accuracy. Therefore, we
changed the number of anchor points, d. We also evaluated
the accuracy of the extended version of Mogul (“MogulE”
hereafter) that utilizes the Modified Cholesky factorization
introduced in Section 4.6. In addition, we evaluated the
search time for various numbers of anchor points since EMR
needs O(nd + d3) time. Figure 2, 3, and 4 show P@k,
retrieval precision, and the search time, respectively; the
COIL-100 dataset was accessed to find the top five nodes.

Figures 2 and 3 indicate that Mogul can more accurately
find the top-k nodes than EMR. Furthermore, Mogul and
MogulE can find semantically the same images as the queries
with over 90% accuracy as shown in Figure 3. As described
in Section 2, since EMR utilizes the anchor nodes to approx-
imately capture the intrinsic manifold structures present in
the data points, EMR cannot well approximate the manifold
structures if the number of anchor points is small. In addi-
tion, our approach exploits the optimization approach intro-

duced in Section 4.2.2 to enhance the approximation quality.
As a result, we can identify the answer nodes more accu-
rately than the state-of-the-art approximation approach.

As shown in Figure 4, EMR is much slower than our
approaches and takes even more computation time as the
number of anchor points increases. This is because the time
complexities of Mogul, MogulE, and EMR are O(n), O(m)
and O(nd + d3), respectively. Note that m is the number
of non-zero elements in matrix L of MogulE as described in
Section 4.6. This figure also indicates that MogulE needs
more computation time than Mogul. This is because the
number of non-zero elements increases if we use Modified
Cholesky factorization; the number of non-zero elements in
matrix L of Mogul and MogulE are 28, 293 and 132, 818, re-
spectively, in this experiment. Since the elements in matrix
L are forced to be zero in Incomplete Cholesky factorization
as described in Section 4.2.2, Mogul yields a sparser data
structure than MogulE. However, MogulE has the advan-
tage that it can find the answer nodes exactly at the cost of
increased search time as shown in Figure 2 and 4.

Figures 2 and 4 also indicate that EMR forces a trade-off
between speed and accuracy. That is, as the number of an-
chor points increases, the precision increases but the search
speed decreases. This is because EMR approximately com-
putes the ranking scores by using anchor points to reduce
the search time. The proposed approach also uses approxi-
mate score computations to enhance the search speed, but it
can more accurately find the top-k nodes than EMR. More-
over, our approach provides users the additional option of
identifying the exact top-k nodes more efficiently than the
state-of-the-art approximation approach.

5.2.2 Pruning Unnecessary Computations
As mentioned in Section 4.2.3 and 4.3, we use the sparse

structure and the estimations to prune unnecessary score
computations. To show the effectiveness of our approach, we
evaluated the search time of an Incomplete Cholesky factor-
ization based approach in which the approximate scores are
computed by not using the sparse properties. This approach
only applied Incomplete Cholesky factorization to obtain the
approximate scores. It is clear that this approach needs
O(n) time from Lemma 1. In addition, we remove the prun-
ing step from Mogul; this version computes the approximate
scores by using the property of vector y (Lemma 4) that is
derived from the sparse structure of matrix L (Lemma 3).
Figure 5 shows the results to find the top five nodes. In
this figure, “Incomplete Cholesky” represents the results of
the Incomplete Cholesky factorization based approach, and
Mogul without the estimation technique is abbreviated to
“W/O estimation”. Figure 6 plots the sparsity patterns of

350

(a) Mogul (b) Random (a) Mogul (b) Random

(1) COIL-100 (2) Pubfig

(a) Mogul (b) Random (a) Mogul (b) Random

(3) NUS-WIDE (4) INRIA

Figure 6: Non-zero elements in matrix L.

lower triangular matrix L where gray dots correspond to
non-zero elements. In this figure, “Random” is the non-zero
pattern when nodes are permuted in random order.

Figure 5 shows that Mogul without the estimation tech-
nique can cut the score computation time by up to 47%
compared to the Incomplete Cholesky factorization based
approach. Since image datasets have manifold structures,
by using graph clustering approach, we can effectively ob-
tain the sparse structure in matrix L as shown in Figure 6.
By utilizing this sparse structure, we can efficiently com-
pute the approximate scores as described in Section 4.2.3.
Furthermore, the comparison of “Mogul” and “Incomplete
Cholesky” in Figure 5 shows that we can additionally cut
the search time by up to 90% from the Incomplete Cholesky
factorization based approach by using the estimations. Since
the estimation technique can effectively find the top-k nodes,
we can efficiently find the answer nodes. This indicates that,
in practice, the computation cost of Mogul is expected to
be lower than the theoretical O(n) time in which none of
the node estimations are assumed to be pruned by (The-
orem 2). A comparison of Figure 1 and 5 indicates that
Mogul can find answer nodes more efficiently than the pre-
vious approaches even if it computes the scores of all nodes.

5.2.3 Search Time for Out-of-sample Queries
Section 4.6.2 shows our approach to handling query nodes

outside the database; Mogul supports out-of-sample queries.
In this section, we evaluate the search time of our approach
for out-of-sample queries. Figure 7 show the search time of
our approach and EMR for an out-of-sample query. Table 2
itemizes the search time of our approach.

As shown in Figure 7, our approach is up to 35 times
faster than EMR for out-of-sample queries. As described in
Section 2, EMR uses the anchor graph to approximately find
top-k nodes. Given an out-of-sample query, EMR dynami-
cally updates the anchor graph by adding the query node.
Therefore, the search cost of EMR for the out-of-sample
query is O(nd+ d3). In contrast, our approach is static; we
do not change matrix L. Instead, we effectively compute
the scores in the query vector q by computing the neighbor
nodes for the query node. Furthermore, we can efficiently
obtain the neighbor nodes by using the nearest cluster for
the query node as shown in Table 2. The search cost of our
approach is O(n) for the out-of-sample query as described
in Section 4.6.2. As a result, Mogul is more efficient than
EMR in handling the out-of-sample query.

10
-3

10
-2

10
-1

10
0

10
1

COIL-100 PubFig NUS-WIDE INRIA

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Mogul
EMR

Figure 7: Search time for
out-of-sample.

10
-4

10
-3

10
-2

10
-1

10
0

10
1

COIL-100 PubFig NUS-WIDE INRIA

W
a

ll
c
lo

c
k
 t

im
e

 [
s
]

Mogul
Incomplete Cholesky

Figure 8: Precomputa-
tion time of Mogul.

Table 2: Breakdown of out-of-sample search.

Dataset
Search time [ms]

Nearest neighbor Top-k search Overall

COIL-100 1.47 0.03 1.50
Pubfig 0.29 6.30 6.59
NUS-WIDE 4.01 29.00 33.01
INRIA 2.81 106.20 109.01

5.2.4 Precomputation Time
Our optimization technique reduces the approximation er-

ror by permuting the nodes. As described in Section 4.2.3,
the optimization approach has the additional advantage that
we can efficiently precompute matrix L by employing the
particular non-zero pattern in the matrix. In this exper-
iment, we evaluated the effectiveness of the optimization
technique in terms of precomputation time. In Figure 8,
“Incomplete Cholesky” represents the results where the non-
zero pattern is not used in the precomputation by randomly
permuting the nodes.

Figure 8 indicates that the precomputing time of our ap-
proach is linear with respect to the number of nodes in the
graph. These results confirm our theoretical analysis on the
precomputing time (Lemma 2). In addition, our technique
can cut the precomputation time by up to 20% by employ-
ing the non-zero pattern. Equations (6) and (7) imply that
an element is expected to be used more times if it lies in the
left-side of the matrix. As shown in Section 4.2.2, the op-
timization technique is designed to obtain the matrix such
that left-side elements are sparse. However, without the
optimization approach, the left-side of the matrix is not ex-
pected to be sparse. As a result, the optimization approach
can reduce the precomputation time.

5.3 Case Studies
Since Manifold Ranking determines the rankings of data

points with respect to the intrinsic manifold structures, it
can effectively find images similar to the query image as
described in Section 1. In Section 5.2.1, by using P@k and
retrieval precision, we quantitatively showed that Mogul has
higher accuracy than EMR. This section evaluates Mogul
in a qualitative manner; it shows the results of case studies
demonstrating that Mogul can find more similar images than
the existing approaches. We applied each approach to the
COIL-100 dataset which contains images of 100 objects from
72 different angles. We set the number of anchor points
to 100 for EMR. Figure 9 depicts the results of the case
studies where “Connected” represents the direct neighbors
of the query nodes in the k-NN graph. That is, “Connected”
corresponds to the results of k-nearest neighbor search since
the k-NN graph is used in Manifold Ranking [3].

This figure indicates that, although the semantically dif-
ferent images can be connected in the given graph, our ap-

351

(1) Query (2) Connected (3) Mogul (4) EMR

Figure 9: Retrieval on COIL-100 dataset.

proach can effectively find images similar to the query node.
For example, in the first case of Figure 9, the color of the
query image is orange and the shape is square. However,
the query image is connected the semantically different im-
age of tomato. This indicates that the semantically different
images can be contained in the results of k-nearest neighbor
search. On the other hand, as shown in the result of our
approach for the first query, Mogul can effectively find se-
mantically similar images; the color and shape of the answer
images are the same as those of the query node. Further-
more, the results of our approach in the first case reveal that
the query is not an image of orange square but orange cargo
truck; Mogul can be used to more effectively understand the
semantics of the query image. In addition, Figure 9 shows
that EMR has difficulty in finding semantically similar im-
ages. For example, in the first case of Figure 9, the results of
EMR are all the same shape (square) but different objects.
In the other cases shown in Figure 9, the results of EMR are
different in terms of color and/or shape.

Since the existing approaches identified images semanti-
cally different from the query images, they suffer from the
semantic gap problem in image retrieval. Even though the
existing approaches can enhance the search speed for Man-
ifold Ranking, they lose the benefit of applying Manifold
Ranking for image retrieval. On the other hand, the re-
sults of our approach are reasonable, and consistent with
our intuition. While our approach achieves high accuracy, it
is significantly more efficient than the previous approaches.
This indicates that our approach is another option for the
research community in utilizing Manifold Ranking.

6. CONCLUSIONS
We have solved the key problems of Manifold Ranking

that prevented it from being used efficiently to find the top-
k nodes. The proposed approach, Mogul, is based on two
advances: (1) It efficiently computes the approximate scores
by utilizing Incomplete Cholesky factorization, and (2) It
prunes unnecessary approximate computations in finding
the top-k nodes by estimating the upper bounding scores.
The search cost of our approach is O(n) which is significantly

smaller than the O(n3) of the inverse matrix approach. Ex-
periments confirmed that Mogul is much faster than the
previous approaches on real-world datasets.

7. REFERENCES
[1] J. Bu, S. Tan, C. Chen, C. Wang, H. Wu, L. Zhang, and X. He.

Music Recommendation by Unified Hypergraph: Combining
Social Media Information and Music Content. In ACM
Multimedia, pages 391–400, 2010.

[2] R. Datta, D. Joshi, J. Li, and J. Z. Wang. Image Retrieval:
Ideas, Influences, and Trends of the New Age. ACM Comput.
Surv., 40(2), 2008.

[3] Y. Fujiwara and G. Irie. Efficient Label Propagation. In ICML,
pages 784–792, 2014.

[4] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and
M. Onizuka. Efficient Ad-hoc Search for Personalized
PageRank. In SIGMOD, pages 445–456, 2013.

[5] Y. Fujiwara, M. Nakatsuji, H. Shiokawa, T. Mishima, and
M. Onizuka. Fast and Exact Top-k Algorithm for PageRank. In
AAAI, 2013.

[6] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang.
Manifold-ranking Based Image Retrieval. In ACM Multimedia,
pages 9–16, 2004.

[7] J. He, M. Li, H. Zhang, H. Tong, and C. Zhang. Generalized
Manifold-ranking-based Image Retrieval. IEEE Transactions
on Image Processing, 15(10):3170–3177, 2006.

[8] R. He, Y. Zhu, and W. Zhan. Fast Manifold-ranking for
Content-based Image Retrieval. In CCCM, pages 299–302,
2009.

[9] H. Jégou, M. Douze, and C. Schmid. Product Quantization for
Nearest Neighbor Search. IEEE Trans. Pattern Anal. Mach.
Intell., 33(1):117–128, 2011.

[10] K.-H. Kim and S. Choi. Walking on Minimax Paths for k-NN
Search. In AAAI, 2013.

[11] N. Kumar, A. C. Berg, P. N. Belhumeur, and S. K. Nayar.
Attribute and Simile Classifiers for Face Verification. In ICCV,
pages 365–372, 2009.

[12] D. G. Lowe. Distinctive Image Features from Scale-invariant
Keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[13] M. Nakatsuji, Y. Fujiwara, A. Tanaka, T. Uchiyama, and
T. Ishida. Recommendations over Domain Specific User
Graphs. In ECAI, pages 607–612, 2010.

[14] S. A. Nene, S. K. Nayar, and H. Murase. Columbia Object
Image Library (COIL-100). Technical report, Feb 1996.

[15] J. Nocedal and S. Wrigh. Numerical Optimization. Springer,
2006.

[16] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. Numerical Recipes 3rd Edition. Cambridge
University Press, 2007.

[17] H. Shiokawa, Y. Fujiwara, and M. Onizuka. Fast Algorithm for
Modularity-based Graph Clustering. In AAAI, 2013.

[18] J. Song, Y. Yang, Y. Yang, Z. Huang, and H. T. Shen.
Inter-media Hashing for Large-scale Retrieval from
Heterogeneous Data Sources. In SIGMOD Conference, pages
785–796, 2013.

[19] Y. Tao, K. Yi, C. Sheng, and P. Kalnis. Quality and Efficiency
in High Dimensional Nearest Neighbor Search. In SIGMOD
Conference, pages 563–576, 2009.

[20] J. Weston, R. Kuang, C. S. Leslie, and W. S. Noble. Protein
Ranking by Semi-supervised Network Propagation. BMC
Bioinformatics, 7(S-1), 2006.

[21] B. Xu, J. Bu, C. Chen, D. Cai, X. He, W. Liu, and J. Luo.
Efficient Manifold Ranking for Image Retrieval. In SIGIR,
pages 525–534, 2011.

[22] M. Yannakakis. Computing the Minimum Fill-in is
NP-complete. SIAM. J. on Algebraic and Discrete Methods,
2(1):77–79, 1981.

[23] X. Yuan, X.-S. Hua, M. Wang, and X. Wu. Manifold-ranking
Based Video Concept Detection on Large Database and Feature
Pool. In ACM Multimedia, pages 623–626, 2006.

[24] D. Zhang, D. Agrawal, G. Chen, and A. K. H. Tung. Hashfile:
An Efficient Index Structure for Multimedia Data. In ICDE,
pages 1103–1114, 2011.

[25] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf.
Learning with Local and Global Consistency. In NIPS, 2003.

[26] D. Zhou, J. Weston, A. Gretton, O. Bousquet, and
B. Schölkopf. Ranking on Data Manifolds. In NIPS, 2003.

352

