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ABSTRACT
Answering queries over Semantic Web data, i.e., RDF graphs,
must account for both explicit data and implicit data, en-
tailed by the explicit data and the semantic constraints hold-
ing on them. Two main query answering techniques have
been devised, namely Saturation-based (Sat) which precom-
putes and adds to the graph all implicit information, and
Reformulation-based (Ref) which reformulates the query
based on the graph constraints, so that evaluating the refor-
mulated query directly against the explicit data (i.e., with-
out considering the constraints) produces the query answer.

While Sat is well known, Ref has received less attention
so far. In particular, reformulated queries often perform
poorly if the query is complex. Our demonstration show-
cases a large set of Ref techniques, including but not limited
to one we proposed recently. The audience will be able to 1.
test them against different datasets, constraints and queries,
as well as different well-established systems, 2. analyze and
understand the performance challenges they raise, and 3. al-
ter the scenarios to visualize the impact on performance. In
particular, we show how a cost-based Ref approach allows
avoiding reformulation performance pitfalls.

1. INTRODUCTION
The efficient management of complex, semantic-rich Web

data is a hot topic within the Databases, Semantic Web, and
Knowledge Representation communities. In particular, the
former has produced many techniques for storing, indexing,
querying and updating such data, e.g., [4, 14], while the
latter have mostly focused on expressive semantic languages
to describe the meaning of the data, e.g., [2, 3, 7]. Cur-
rently, technical interest is split between query evaluation
works, which consider large databases and complex queries,
but ignore the data semantics, and reasoning’ ones, whose
main focus is on the knowledge description formalisms. As
an unfortunate consequence, reasoning is rarely considered
in database systems and prototypes handling Semantic Web
data. This makes them ill-adapted to real-life applications,
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which are rich in constraints describing data properties [13];
such constraints must be taken into account in order to com-
pute correct results, and do so efficiently.

One possible reason for disregarding semantics is that for
popular data models (such as the W3C’s Resource Descrip-
tion Framework, or RDF in short) and associated constraint
languages (such as RDF Schema, or RDFS), constraints can
be compiled in the database, by materializing in the data all
possible consequences of the constraints. For instance, if a
constraint states that any Manager is an Employee, given a
database D, one can build another database D′ by adding to
D an Employee instance for each Manager from D. This can
be seen as making explicit in D′, the instances of Employee
which were implicit in D; the process is called material-
ization or saturation. To answer a query over the original
database D under the above constraint, one can just evalu-
ate the query over D′, ignoring the constraint (since its ef-
fects are fully reflected in D′). We use Sat to designate the
saturation-based query answering technique outlined above.

Sat is rather simple and well-understood. However, the
saturation needs to be maintained after changes in the data
and/or constraints, which may incur a performance penalty.
Further, Semantic Web data is often split across indepen-
dent ones, typically called RDF endpoints; a set of well-
known endpoints are listed in the Linked Open Data Cloud
portal at U. Mannheim. Data in each such independent
source may or may not be saturated; further, implicit facts
may be due to the presence of one fact in one endpoint,
and a constraint in another. Computing the complete (dis-
tributed) set of consequences in this setting is unfeasible,
especially considering that such sources often return only
restricted answers (e.g., the first 50) to a query, to avoid
overloading their servers.

The alternative technique is based on query reformulation.
It leaves the database unchanged, but changes the given
query Q into a query Q′ which, evaluated over the original
database D, returns the answer of Q against D′, reflect-
ing both the implicit and the explicit data. In the example
above, if Q asks for all the Employees, it is reformulated into
Q′ returning the union of all Employees and all Managers.
We term this technique reformulation-based query answer-
ing, and denote it Ref. While it has obvious advantages
(it does not require credentials or space to store implicit
data, nor the effort to maintain saturation), depending on
the language in which the reformulated query is expressed,
which we term a reformulation strategy, reformulation may
lead to very large queries, whose evaluation is inefficient or
even infeasible, making Ref non practical in general.
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Our demonstration aims at exposing the performance chal-
lenges raised by reformulation-based query answering. On
a set of scenarios (data, constraints, and queries), it allows
the audience to experiment with a variety of Ref strategies,
and evaluate them through performant relational database
management systems (RDMBSs, in short). To enlarge the
comparison, we also include native RDF systems using their
own fixed (incomplete) Ref strategy, Virtuoso and Allegro-
Graph, as well as a query answering technique based on
translating scenarios to Datalog programs and resorting to
the LogicBlox engine for evaluation. In particular, we show
that (i) a fixed reformulation strategy may lead to very bad
performance or simply fail - on moderate-size databases and
simple constraints - on all the systems, because reformu-
lated queries may be syntactically huge and (ii) a cost-based
query reformulation approach allows avoiding such perfor-
mance pitfalls and makes Ref feasible - and efficient - in
the same setting(s).

2. RELATED WORK
A thorough discussion of RDF Ref and Sat can be found

in [5, 6]; we recall the most relevant works here. Most RDF
data management systems use Sat, either providing a satu-
ration service, like 3store, OWLIM, Sesame, etc., or by sim-
ply assuming that RDF graphs have been saturated prior
to loading. RDF platforms built on top of RDBMSs [4], or
RDBMS-style engines, e.g., [14] fall in this category.
Ref has also been the topic of many works [8, 12, 15,

16], including ours [9]; they apply to the Description Log-
ics (DLs) [3] fragment of RDF, the conjunctive subset of
SPARQL and extensions thereof [2, 7, 12, 16], including
the “database fragment” of RDF we introduced in [9], the
most expressive RDF fragment for which Ref techniques are
known. Only a few RDF data management systems, such
as AllegroGraph, Stardog or Virtuoso, use reformulation, in
some cases incomplete (ignoring some RDFS constraints) [6].

A query is typically reformulated into an equivalent large
union of conjunctive queries (UCQ) w.r.t. the RDF Schema
constraints [7, 8, 9, 12, 16], or in a language currently not
well supported by available engines, e.g., nested SPARQL [2].
The technique of [15], when translated to the RDF setting,
reformulates a conjunctive query into a join of unions of
atomic queries, called a semi-conjunctive query (SCQ).

In our recent work [5], we devised a novel strategy for im-
proving Ref performance. Instead of reformulating into a
fixed UCQ or SCQ, we have identified a space of alternative
reformulations, corresponding to an enlarged reformulation
language consisting of joins of unions of conjunctive queries
(denoted JUCQs in the sequel). UCQ and SCQ reformulations
are each just a point in this space. The evaluation perfor-
mance of distinct JUCQs from this space may differ by several
orders of magnitude; we devised a cost model and used it
in a greedy search algorithm to find out the JUCQ whose
evaluation is likely to be most efficient.
Sat and Ref are combined in [16]; the resulting reformu-

lated query may still be large, thus hard to evaluate.

3. PRELIMINARIES
RDF Graphs. An RDF graph (or graph, in short) is a set of
triples of the form s p o. A triple states that its subject s has
the property p, whose value is the object o. We consider only

Assertion Triple Relational notation

Class s rdf:type o o(s)
Property s p o p(s, o)

Constraint Triple OWA interpretation

Subclass s rdfs:subClassOf o s ⊆ o

Subproperty s rdfs:subPropertyOf o s ⊆ o

Domain typing s rdfs:domain o Πdomain(s) ⊆ o

Range typing s rdfs:range o Πrange(s) ⊆ o

Figure 1: RDF (top) & RDFS (bottom) statements.

well-formed triples, as per the W3C’s RDF specification, us-
ing uniform resource identifiers (URIs), typed or un-typed
literals (constants), and blank nodes (unknown URIs or lit-
erals) corresponding to a form of incomplete information.

Notations. We use s, p, and o in triples as placeholders.
Literals are shown as strings between quotes, e.g., “string”.
Finally, the set of values – URIs (U), blank nodes (B), and
literals (L) – of an RDF graph G is denoted Val(G).

Figure 1 (top) shows how to use triples to describe re-
sources, that is, to express class (unary relation) and prop-
erty (binary relation) assertions. The RDF standard pro-
vides a set of built-in classes and properties, as part of the
rdf: and rdfs: pre-defined namespaces. We use these names-
paces exactly for these classes and properties, e.g., rdf:type
specifies the class(es) to which a resource belongs.

For example, the RDF graph G shown below describes a
book, identified by doi1: its author (a blank node :b1 related
to the author name), title and date of publication.

G =

{doi1 rdf:type Book, doi1 writtenBy :b1,
doi1 hasTitle “El Aleph”,
:b1 hasName “J. L. Borges”,

doi1 publishedIn “1949”}

RDF Schema allows enhancing the descriptions in RDF
graphs by means of RDFS triples, declaring semantic con-
straints between the classes and the properties used in those
graphs. Figure 1 (bottom) shows the allowed constraints
and how to express them; domain and range denote respec-
tively the first and second attribute of every property. The
RDFS constraints (Figure 1) are interpreted under the open-
world assumption (OWA) [1].

RDF entailment. Implicit triples may be part of the
RDF graph even though they are not explicitly present in it.
W3C names RDF entailment the mechanism through which,
based on the explicit triples and some entailment rules, im-
plicit RDF triples are derived. We denote by `iRDF imme-
diate entailment, i.e., the process of deriving new triples
through a single application of an entailment rule. More
generally, a triple s p o is entailed by a graph G, denoted
G `RDF s p o, if and only if there is a sequence of appli-
cations of immediate entailment rules that leads from G to
s p o (where at each step of the entailment sequence, the
triples previously entailed are also taken into account). For
instance, assume that the RDF graph G above is extended
with the following constraints.
• books are publications:

Book rdfs:subClassOf Publication
• writing something means being an author:

writtenBy rdfs:subPropertyOf hasAuthor
• writtenBy is a relation between books and people:

writtenBy rdfs:domain Book and
writtenBy rdfs:range Person
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Figure 2: Sample RDF graph.

The resulting graph is depicted in Figure 2. Its implicit
triples are those represented by dashed-line edges.

Saturation. The immediate entailment rules allow defin-
ing the finite saturation (a.k.a. closure) of an RDF graph
G, which is the RDF graph G∞ defined as the fixed-point
obtained by repeatedly applying `iRDF rules on G.

The saturation of an RDF graph is unique (up to blank
node renaming), and does not contain implicit triples (they
have all been made explicit by saturation). An obvious con-
nection holds between the triples entailed by a graph G and
its saturation: G `RDF s p o if and only if s p o ∈ G∞.

RDF entailment is part of the RDF standard; the answers
to a query posed on G must take into account all triples in
G∞, since the semantics of an RDF graph is its saturation.

Conjunctive Queries. We consider the widely used
SPARQL dialect consisting of (unions of) basic graph pattern
(BGP) queries, a.k.a. conjunctive queries (CQs), widely con-
sidered in research but also in real-world applications [13].
A BGP is a set of triple patterns, or triples/atoms in short.
Each triple has a subject, property and object, some of
which can be variables.

Notations. We use the CQ notation q(x̄):- t1, . . . , tα, where
{t1, . . . , tα} is a BGP; the query head variables x̄ are called
distinguished variables, and are a subset of the variables in
t1, . . . , tα; for boolean queries x̄ is empty. The head of q is
q(x̄), its body is t1, . . . , tα; x, y, z, etc. denote variables.

Query answering. The evaluation of a CQ q against G

has access only to G’s explicit triples, thus may lead to an
incomplete answer. The (complete) answer of q against G is
obtained by the evaluation of q against G∞. For instance, the
query below asks for the names of authors of books somehow
connected to the literal 1949:
q(x3):- x1 hasAuthor x2, x2 hasName x3, x1 x4 “1949”
Its answer against the graph in Figure 2 is q(G∞) =
{〈“J. L. Borges”〉}. Note that evaluating q only against
G leads to the empty answer, which is obviously incomplete.

3.1 Reformulation-based query answering
The database (DB) fragment of RDF [9] is the most ex-

pressive RDF fragment for which both saturation- and
reformulation-based query answering techniques have been
defined. Its name comes from the fact that query answering
against any graph from this fragment can be easily imple-
mented on top of any RDBMS.

The DB fragment is defined by: (i) Restricting RDF en-
tailment to the RDF Schema constraints only (Figure 1),
a.k.a. RDFS entailment. While simple, these allow express-
ing many practical application domain (ontological) con-
straints. (ii) Not restricting RDF graphs in any way. In
other words, any triple allowed by the RDF specification is

also allowed in the DB fragment.
The query reformulation algorithm [9] exhaustively ap-

plies a set of 13 reformulation rules based on RDFS con-
straints. Starting from a CQ query q to answer against db, it
produces a UCQ reformulation qref using the constraints in a
backward-chaining fashion, which retrieves the complete an-
swer to q out of the (non-saturated) db: q(db∞) = qref(db).

4. OPTIMIZED REFORMULATION
We illustrate performance challenges raised by the evalu-

ation of state-of-the-art reformulated queries, and how our
cost-based approach [5] allows tackling them.

Example 1. Consider the 100 million triples LUBM [11]
dataset and the query:
q(x, u, y, v, z) :-

x rdf:type u, (t1)
y rdf:type v, (t2)
x ub:mastersDegreeFrom “http : //www.Univ532.edu”, (t3)
y ub:doctoralDegreeFrom “http : //www.Univ532.edu”, (t4)
x ub:memberOf z (t5)
y ub:memberOf z (t6)

The CQ to UCQ reformulation of q leads to a query qref

corresponding to a union of 318, 096 CQs, which could not
be evaluated in our experimental setting: this huge query
could not even be parsed [5].

Now consider the query q′ = (t1)ref ./ (t2)ref ./ (t3)ref ./
(t4)ref ./ (t5)ref ./ (t6)ref , where t1, . . . , t6 are the triples
of q; this corresponds to the SCQ reformulation proposed in
[15]. q′ is equivalent to qref , and in our same experimen-
tal setting, it is evaluated in 229 seconds. This is due
to the large results of the (syntactically small) subqueries
(t1)ref , . . . , (t6)ref (especially the first two with 33, 328, 108
results each), which required some time to join.

Finally, consider the query q′′ = (t1, t3)ref ./ (t3, t5)ref ./
(t2, t4)ref ./ (t4, t6)ref , also equivalent to q′. Evaluating q′′

takes 524 ms, more than 430 times faster than q′.The
performance advantage of q′′ is due to intelligently group-
ing triples, so that the subquery corresponding to each triple
group can be efficiently evaluated and returns results of man-
ageable size. In particular, the largest-result query triples
(t1) and (t2) had been grouped with (t3) and (t4) respec-
tively, resulting in smaller intermediate results of 2, 296 and
2, 475 rows respectively, and improving the perfomance.
Grouping triples (t3) and (t4) with the (t5) and (t6) respec-
tively, yields analogous performance improvements.

As this example shows, enlarging the query reformulation
language from the state-of-the-art UCQs [7, 8, 9, 10, 12, 16]
or of SCQs [15], to that of joins of UCQs (or JUCQs, in short),
has a great performance improvement potential.
Query covering is a technique we introduced [5] for ex-
ploring a space of JUCQ reformulations of a given query. The
idea is to cover a query q with (possibly overlapping) sub-
queries; for instance, {{t1, t3}, {t3, t5}, {t2, t4}, {t4, t6}} is a
cover of our query q, which has the shortest evaluation time.

As shown in [5], each cover naturally leads to a query an-
swering strategy: reformulating each cover subquery using
any CQ-to-UCQ algorithm, and joining the results of these re-
formulated queries, yields the answer to the original query.

Greedy cost-based cover selection (GCov). To select
the cover leading to the most eficient evaluation, we rely
on a cost estimation function c which, for a JUCQ q, returns
the cost of evaluating it through an RDBMS storing the
database. Function c may reflect any (combination of) query
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Figure 3: Demonstration screen shots.

evaluation costs, such as I/O, CPU etc.; in [5] we computed
c based on database textbook formulas.

Our greedy cost-based cover search algorithm, named GCov,
starts with a cover where each atom is alone in a fragment,
and adds an atom to a fragment (leading to a new cover) if
the cost model suggests the new cover may lead to a more
efficient query answering strategy. This (i) makes Ref fea-
sible in cases when the reformulated queries built by previ-
ous reformulation algorithms simply fail, and (ii) strongly
improves Ref performance in the other cases, as our exper-
iments have shown [5] on three different RDBMSs.

5. DEMONSTRATION OUTLINE
Our demo analyzes reformulation-based query answering,

with a particular focus on performance and completeness.
A first dimension of the problem is the query reformu-

lation strategy. Since UCQ and SCQ reformulations are JUCQ

ones obtained from particular query covers, our demo rep-
resents them by the corresponding covers, which are
well suited to a graphical visualization.

A second dimension is the data management platform.
(i) We use three well-established RDBMSs, on top of
which queries can be answered using any cover: a fixed one
(i.e., a UCQ or SCQ), a user-chosen one with the help of our
GUI (a JUCQ), or a best one w.r.t. cost (a best performing
JUCQ). (ii) Our demo integrates the popular RDF platforms
Virtuoso and AllegroGraph using their own (incomplete)
Ref strategy. These systems and reformulation strategies
are representative of the state of the art for Ref. We also
show a simple encoding of the RDF data, constraints and
queries into Datalog programs to be evaluated by the Log-

icBlox engine. This can be viewed as another answering
technique Dat, an alternative to Ref and Sat.

The third important aspect is (sub)query evaluation costs,
which depends on the data and constraints. We will rely on
real and synthetic RDF data sets, such as French statistical
(INSEE) and geographical (IGN) data, DBLP, and LUBM.
The demo attendee experience is as follows. 1. Pick an
RDF graph (data and constraints), and visualize its statis-
tics (value distributions for subject, property and object, for
attribute pairs etc.). 2. Select a query and answer it through
a chosen system and query cover, or through all the available
systems, to compare their performance and completeness.
3. Observe the evaluation runtime and inspect: the cho-
sen query plan; cardinalities and costs of (sub)queries; and
(if the cover was selected by GCov) the space of explored
alternatives, and their estimated costs. 4. Choose (from
a pre-defined set) or propose modifications to the available
RDF data and constraints, and re-run steps 1.-3. to see the
impact on Ref performance (constraints and query modifi-
cations, in particular, may have a dramatic impact).
Acknowledgements This work has been partially funded
by the PIA Datalyse project and the ANR PAGODA project.
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