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ABSTRACT
As data volume and variety have increased, so have the ties be-
tween machine learning and data integration become stronger. For
machine learning to be effective, one must utilize data from the
greatest possible variety of sources; and this is why data integra-
tion plays a key role. At the same time machine learning is driving
automation in data integration, resulting in overall reduction of in-
tegration costs and improved accuracy. This tutorial focuses on
three aspects of the synergistic relationship between data integra-
tion and machine learning: (1) we survey how state-of-the-art data
integration solutions rely on machine learning-based approaches
for accurate results and effective human-in-the-loop pipelines, (2)
we review how end-to-end machine learning applications rely on
data integration to identify accurate, clean, and relevant data for
their analytics exercises, and (3) we discuss open research chal-
lenges and opportunities that span across data integration and ma-
chine learning.
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1. INTRODUCTION
The ties between data integration and machine learning have

always been apparent [4]. However, the sheer volume and vari-
ety of data consumed by modern analytical pipelines have greatly
strengthened the connections between data integration and machine
learning. Data integration systems are increasingly looking to use
machine learning to automate parts of different integration tasks.
Examples include data cataloging and inferring the schema of raw
data [17], data alignment [14], and transformation recommenda-
tions for data normalization [10]. At the same time, machine learn-
ing algorithms are only as good as the data used for training [18],
which means that one must utilize data from the greatest possible
variety of sources. Data integration and machine learning making
each other more effective is a true example of a powerful synergy.

Goal. The goal of this tutorial is to delineate the interplay be-
tween modern data integration (DI) techniques and modern ma-
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chine learning (ML). Specifically, we review (1) how recent ad-
vancements in machine learning (such as highly-scalable inference
engines and deep learning) are revolutionizing data integration, and
(2) how incorporating data integration tasks in machine learning
pipelines leads to more accurate and usable systems for analytics.
This tutorial highlights the strong connections between data inte-
gration and machine learning, review related technical challenges
and recent solutions, and outline open problems.

Scope. This tutorial focuses on how recent advancements in ma-
chine learning are shaping the area of data integration and high-
lights the role of data integration methods in modern machine learn-
ing pipelines. We review machine learning-based solutions (in-
cluding deep learning solutions) that are revolutionizing solutions
across the entire data integration stack. In addition, our tutorial
touches aspects of data cleaning—a problem closely related to data
integration. Specifically, we focus on recent data cleaning solu-
tions that adopt statistical semantics and can used to address data
preparation challenges in machine learning pipelines.

Outline. This tutorial is split into four parts:

1. A DI and ML primer: In this introductory part of the tu-
torial, we review the problems that constitute a typical DI
stack [4] and discuss ML-related concepts.

2. ML solutions for automated DI: In the first technical part
of the tutorial, we focus on DI. We motivate a ML-based view
for DI and review algorithmic frameworks and systems that
build upon ML methods to introduce solutions for DI.

3. DI for effective ML pipelines: In the second technical part
of the tutorial, we review how DI tasks relate to modern ML
and play a crucial role in obtaining highly accurate results.
We focus on two tasks that form the major bottlenecks in any
ML: creation of training datasets, and cleaning of input data.

4. Future opportunities: Finally, we outline open research prob-
lems as potential directions for new research in this area.

In what follows, we describe at a high level the technical content
covered in each of the aforementioned parts.

2. ML SOLUTIONS FOR AUTOMATED DI
DI solutions applied ML early on to understand semantics of

data, and align schema and entities. Recent progress in ML signif-
icantly improved the results, and is making revolutionary changes
to this field. A summary ML models that have been explored for
various DI tasks in the literature is shown in Table 1.

2.1 ML for Entity Resolution
Entity resolution identifies records that refer to the same real-

world entity. It was almost 50 years since entity resolution was first
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Table 1: Summary of ML techniques used for data integration.
DI tasks Hyperplanes Kernal Tree-based (e.g., Graphical models Logic programs Neural networks

(e.g., Log Reg) (e.g., SVM) Random forest) (e.g., CRF) (e.g, soft logic) (e.g., RNN)
Entity resolution X X X X X

Data fusion X X
DOM extraction X
Text extraction X X X

Schema alignment X X X

proposed [11]. It is an unavoidable and arguably the most important
problem in integrating data from different sources. Entity resolu-
tion proceeds in three steps: (1) blocking records that are likely to
refer to the same real world entity; (2) comparing pairs of records
to decide if it is a match; and (3) clustering records according to
pairwise matching results, such that each cluster corresponds to a
real-world entity. For a long while entity resolution is solved us-
ing rule-based methods or unsupervised learning: blocking is rule
based (e.g., blocking person records by name and phone numbers);
pairwise matching is rule-based (often through a linear combina-
tion of attribute similarities) [11, 12]; and clustering is rule-based
(e.g., transitive closure, MERGE-CENTER) or by optimizing a par-
ticular objective function (e.g., Markov clustering and correlation
clustering) [19], without any need of training data.

Supervised learning approaches to entity resolution started about
20 years ago, and used Decision trees, Logistic regression, and
SVM until early 2010’s. ML models typically compute attribute-
wise value similarity and use that as features. The survey by Kopcke
et al. [24] shows that early supervised approaches such as SVM
and Decision tree with 500 training labels obtain similar results
with rule-based methods: ∼ 90% F-measure for easy data sets
(e.g., Bibliography) and ∼ 70% F-measure for harder ones (e.g.,
E-commerce). Recent ML models, such as Random Forest, sig-
nificantly improved pairwise matching. Das et al. [3] show that
training Random Forest on around 1,000 labels can obtain ∼ 95%
F-measure for easy data sets, and ∼ 80% F-measure for harder data
sets. Deep learning allows comparing long text values by their em-
bedding representations, and starts to show promise when matching
texts and dirty data [32, 48]. Finally, logic-based learning meth-
ods (e.g., probabilistic soft logic) enable linking entities of multiple
types at the same time, called collective linkage [38].

The high precision and recall achieved recently for entity resolu-
tion make it ready for industry production. However, good perfor-
mance comes with a cost: the cost of generating training labels. A
recent study shows that obtaining a precision of 99% and recall of
99% (required for production) on linking a pair of fairly clean data
sets requires 1.5M training labels [5]. This challenge motivates re-
search on active learning to collect training labels [3, 45].

2.2 ML for Data Fusion
Data fusion resolves conflicts from different data sources. Li et

al. [26] show that even in quality-sensitive domains (e.g., stock,
flight), authoritative sources can provide conflicting and erroneous
values. Access to highly accurate data is critical for industry ap-
plications, such as knowledge graph search, so data fusion is often
an important step in data integration. Recently, it evolves to knowl-
edge fusion [7, 6, 8] to clean both data and extraction errors, playing
an important role in automatic knowledge graph construction.

Data fusion also started with rule-based methods [9], such as av-
eraging and voting, and data mining methods, such as HITS [23,
35]. The large body of work on data fusion resorts to Graphical
model [8, 26, 13] to model the relationship between data correct-
ness, source accuracy, and source correlation (e.g., copy relation-
ship) and uses EM to obtain the solution. It is mainly unsuper-

vised learning, but can also leverage ground truths in parameter
initialization so allows semi-supervised learning. Recently, SLiM-
Fast[43] is proposed as a discriminative model that also enables
considering other features of data sources (e.g., update date, num-
ber of citations, etc.) for fusion; in presence of sufficient labeled
data SLiMFast uses empirical risk minimization (ERM).

2.3 ML for Data Extraction
Data extraction allows obtaining structured data from unstruc-

tured data such as text, and semi-structured data such as Web DOM
trees. We first discuss extraction for semi-structured data, which
is shown to contribute to 80% knowledge extracted by Knowl-
edge Vault [6] from the web. A decade ago extraction from semi-
structured data is mainly conducted by wrapper induction; that is,
based on annotations on a few webpages from a website, induc-
ing the XPaths that can extract values of given attributes from the
whole website [16]. This method requires limited annotations for
a website, but each website requires its own annotations, making it
infeasible for extraction from the whole website.

Recently, distant supervision is applied to extraction from semi-
structured data. Distant supervision was originally applied to texts:
instead of manually creating labels, distant supervision leverages
existing seed data to automatically create (oftentimes noisy) labels,
and enables learning on such labels [21, 30, 52]. Applying the same
techniques on semi-structured data is able to extract 1.3M (entity,
attribute, value) knowledge triples from the web, with an accuracy
of ∼ 60% [6], and this accuracy is improved to over 90% [27].

Text extraction is hard because of the whims in composing texts
in expressing a meaning. Early techniques rely on lexical and syn-
tactic features extracted from texts. These features are used to
train logistic regression first [30], later CRF to model correlation
between attributes [21], and then Markov logic network to allow
rule specification [52]. RNNs and word embeddings have enabled
deep understanding of texts without much, if any, feature engineer-
ing [29]. Recently, Bi-LSTM and attention are combined with other
models to significantly improve extraction [20, 28, 51].

2.4 ML for Schema Alignment
Schema alignment matches types and attributes. It is one of the

first problems studied for data integration and adopted ML tech-
niques from the beginning, such as Naive Bayes and stacking [44].
Although automatic schema mapping seems an overkill when we
align data between two data sources with typical sizes of schemas,
it is important when we consider millions of sources from the web.
For example, Pimplikar et al. [36] studies how to apply graphical
model to align webtables with knowledge bases, by aligning enti-
ties and schemas at the same time.

Universal schema [44] has revolutionized schema alignment. It
is motivated by OpenIE knowledge extraction: unlike traditional
information extraction that extracts knowledge according to a pre-
defined ontology (i.e., schema), OpenIE extracts (subject, predi-
cate, object) triples, where the predicate can be any word or phrase
from texts. Reasoning over the predicates and mapping them to ex-
isting ontology predicates is important to broaden applications for
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OpenIE results. Such relationships can be asymmetric; for exam-
ple, ”employed by” can be inferred from ”teach at”, but not vice
versa. Universal schema is proposed for this purpose: instead of
outputting mappings between predicates, it adds inferred triples.
Original solutions for universal schema leverages matrix factoriza-
tion [44]; recently, it is improved using CNN and RNN [47, 49] and
can infer a relationship be composing two or more relationships
(e.g., ”Melinda-lives-in-Seattle” can be inferred from ”Melinda-
spouse-Bill-Chairman-Microsoft-HQ-in-Seattle”) [2, 33].

3. DI FOR EFFECTIVE ML PIPELINES
We now review how DI methods help address two major bottle-

necks in ML pipelines: training data generation and data cleaning.

3.1 Creation of Large-Scale Training Data
ML pipelines rely on labeled training data to achieve high qual-

ity. The collection of labeling data via manual annotation can be a
particularly tedious and non-scalable process. This has motivated
a series of recent works around the paradigm of weak supervision
with the goal to use higher-level and noisier input from experts and
heterogeneous data sources to train ML systems [31].

Various forms of weak supervision have been studied but the
most effective techniques focus on weak labels, i.e., a set of noisy
labeled examples. These may come from crowd workers [41], may
be the output of heuristic rules [40], or the result of distant super-
vision [30], where one or multiple external knowledge bases are
used to guide the training of an ML system. DI techniques play an
instrumental role in all aforementioned weak supervision methods.

Distant supervision relies on entity linking [22], a task similar
to that of entity resolution (see Section 2.1) to match facts from a
knowledge base to mentions in the input data. Distance supervi-
sion requires that a DI task is solved accurately so that high-quality
training data is obtained. The other two forms of weak supervision
that involve collecting labels from weak sources (i.e., crowd work-
ers or heuristic rules), are closely related to data fusion (see Sec-
tion 2.2). Here, one needs to deal with data sources that are noisy,
can provide conflicting labels, and might be highly correlated. To
address these issues, state-of-the-art frameworks for weak supervi-
sion, such as Snorkel [39], entail three tasks: They (1) learn the
accuracy of each weak supervision source by leveraging the agree-
ment and disagreement across different labeling, (2) they model
the correlations of weak supervision sources by employing struc-
ture learning techniques, and (3) they model the expertise of differ-
ent sources of weak supervision for specific data inputs. All three
tasks are related to data fusion [9].

3.2 Data Cleaning
State-of-the-art ML pipelines rely on the high-effort task of data

cleaning to obtain high-quality results [37]. Data cleaning is typ-
ically split into three tasks: (1) error detection, where data incon-
sistencies such as duplicate data, violations of logical constraints
that assert the consistency of the data, and incorrect data values are
identified, (2) data repairing, which involves updating the available
data to remove any detected errors, and (3) data imputation, which
derives and fills in missing data from existing data. We focus on
end-to-end frameworks for data cleaning that rely on lightweight
high-level human supervision to detect and repair data errors.

We focus on a new breed of error detection and data repair-
ing frameworks that leverage statistical approaches to perform data
cleaning. We describe systems such as MacroBase [1] that rely
on quantitative statistics to identify unusual trends (i.e., outliers)
in data, frameworks such as HoloClean [42] that employ statistical

learning and probabilistic inference to repair errors in data, and ap-
proaches such as BoostClean [25] that leverage boosting to perform
on-demand data cleaning for downstream ML models.

4. FUTURE OPPORTUNITIES
We finally discuss several open challenges and opportunities in

the intersection of DI and ML.

Multi-modal DI. Traditionally, DI has focused on textual data.
However, there is an abundance of image, sensory, and audio data
that is rarely integrated with textual data into a common queryable
knowledge repository. This is to a certain extent due to the inher-
ently different methods required to process each aforementioned
data mode. Deep learning methods can potentially provide the nec-
essary tools and formalisms required for multi-modal data integra-
tion. Recent results in multi-modal information extraction [51] and
multi-modal deep learning [34] provide positive evidence.

Fast and Cheap Training Data for DI. ML models for DI re-
quire large amounts of training data when applied over domains
with reach domain-specific semantics. Obtaining large number of
training examples can be resource-intensive in many practical sce-
narios. Recent approaches in the database literature have focused
on active learning methods to solicit human supervision more ef-
fectively [15, 46, 50]. A promising direction is to understand how
these methods relate to weak supervision methods recently intro-
duced in the machine learning community [40].

Human-in-the-Loop DI. ML models can hardly obtain a 100%
accuracy on DI, which is a very complex task. It is important to
involve human in the loop, conducting labeling, verifications, and
auditing. A future direction is for a system to automatically identify
when, where, and how to get human involved, by applying active
learning, transitive learning, and reinforcement learning.

Effective Data Augmentation for ML-pipelines. Data augmenta-
tion refers to a class of data enrichment techniques for controlling
the generalization error of ML models. Recent works in ML have
focused on devising formal methods for data augmentation. How-
ever, most approaches rely on transformation of the data points al-
ready present in a seed dataset. A major opportunity is to explore
how the efforts of the database community in data cataloging [17]
and source selection [10] can be applied in the context of data aug-
mentation to improve the quality of the learned ML models.
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