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ABSTRACT
A large body of research on subgraph query processing on
large networks assumes that a query is posed in the form
of a connected graph. Unfortunately, end users in practice
may not always have precise knowledge about the topologi-
cal relationships between nodes in a query graph to formu-
late a connected query. In this demonstration, we present
a novel graph querying paradigm called partial topology-
based network search and a query processing system called
panda to efficiently find top-k matches of a partial topology
query (ptq) in a single machine. A ptq is a disconnected
query graph containing multiple connected query compo-
nents. ptqs allow an end user to formulate queries without
demanding precise information about the complete topol-
ogy of a query graph. We demonstrate various innovative
features of panda and its promising performance.
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1. INTRODUCTION
Subgraph search, which retrieves one or more subgraphs

in a network that exactly or approximately match a user-
specified query graph, has many real-world applications. A
common assumption among existing subgraph search tech-
niques is that the query graph is connected. That is, users
precisely know the topological structure of what they are
seeking. Unfortunately, due to the topological complexity
of the underlying network data, it is often unrealistic to as-
sume that an end user is aware of the precise relationships
between nodes in a query graph, necessary to formulate a
“valid” query. There are many instances in which a user has
a clear goal in mind but only a vague idea of how a query
should be specified. Consequently, it is not always possible
to express a query using a connected graph.

As an example, consider the collaboration network (e.g.,
LinkedIn) in Figure 1(a) where each node represents a per-
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Figure 1: Motivating example.

son having attributes representing professional skills (e.g.,
project manager (pm), database developer (db), program-
mer (prg), and software tester (ts)). Each edge indicates
whether a pair have collaborated with each other. Suppose a
manager, Bob, wants to organize a team for a new software
development project by issuing a subgraph search query on
this network. Initially, Bob wishes to form a subteam con-
sisting of three members (1 pm, 2 prgs) and hopes that the
pm and two prgs have collaborated with each other. For-
tunately, he can formulate this requirement as a connected
subgraph query as shown in Figure 1(b) and leverage on any
state-of-the-art graph query processing system (e.g., [3]) to
retrieve matching subgraphs to his query. After few weeks,
Bob wishes to expand his team to five members by adding
a subteam comprising of a ts and a db who have collab-
orated together. At the same time, although there is no
strict structural requirement between these two subteams,
Bob hopes that they can be as close as possible. Note that
he does not wish to hire a member that can play multi-
ple roles (e.g., prg as well as db) as such member may be
overloaded with responsibilities leading to delay in comple-
tion of the project. Unfortunately, Bob now cannot express
these requirements in form of a connected subgraph query as
he is unaware of the precise topological connection between
these two subteams. Instead, Figure 1(c) is a query graph
that embodies Bob’s requirements and preferences. Observe
that it is disconnected and consists of two non-overlapping
connected query components, each of which shows the topol-
ogy that needs to be matched exactly in any query result.
Furthermore, the distances between these matching compo-
nents need to be as close as possible. We refer to such a
disconnected query graph as a partial topology query [5].

In this demonstration, we present a novel subgraph query
processing system called panda (PArtial Topology-based
Network Data SeArch) [5] to efficiently process a partial
topology query (ptq) in a single machine. A ptq QP =
(q1, . . . , q`) comprises two or more disjoint query components
(i.e., ` ≥ 2). A query component qi = (Vqi , Eqi) is an un-
weighted and undirected connected graph. We refer to i in
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Figure 2: Architecture of PANDA.

qi as component index. Figure 1(c) shows a ptq where ` = 2.
Then, given an undirected network G, panda returns top-k
matches of QP where a match M is a connected subgraph
of G. For each query component qi in QP , there exists a
subgraph gi of M such that it is isomorphic to qi. In ad-
dition, the matching subgraphs of any two different query
components in M must not overlap, and the distance be-
tween them should be as close as possible. The subgraph
depicted using shaded nodes in Figure 1(a) is an example
match of the ptq in Figure 1(c). Observe that it ensures
that a member does not play multiple roles.

In this demo, we will first present a walk-through of the
panda tool, and explain how it facilitates visual formulation
of graph queries (i.e., ptqs) that are extremely difficult to
formulate using a connected graph. We will then show how
it can be used to process ptqs. Specifically, we demonstrate
three flavors of ptq processing algorithms (sen-panda, po-
panda and simpo-panda) [5], designed to handle networks
of varying size. We showcase the benefits and tradeoffs of
these algorithms w.r.t runtime and result quality. Finally,
we will highlight how panda can enable map-based interac-
tive visualization of ptq results on large networks.

2. SYSTEM OVERVIEW
Figure 2 shows the system architecture of panda and

mainly consists of the following modules. The reader may
refer to [5] for algorithmic details and performance results.

The GUI module. Figure 3 is a screenshot of the vi-
sual interface of panda. It consists of four panels. Panel 1
enables us to load a new network dataset to query, trigger vi-
sual formulation and processing of a new ptq, and invoke a
configuration panel to set various parameters (e.g., k for top-
k matching results) and select a ptq processing algorithm
(e.g., simpo-panda). Panel 2 is comprised of two subpan-
els. The top subpanel lists the network data sources that are
currently stored in the underlying network data repository.
Upon selecting a specific data source (e.g., the citation net-
work Cit-HepPh), the bottom part of Panel 2 displays the
list of unique labels of the nodes in this selected network.
Panel 3 shows the visual layout of the selected network in
the form of a network map (generated by the Layout Man-
ager module). Panel 4 is the ptq editor, which is used to
visually formulate a ptq. Each query component in a ptq is
assigned a unique node color to distinguish one component
from another. Once a query is executed, the location of its
matching results are shown on the network map using red
pins (generated by the Results Visualizer module). A user
can click on these pins to see further details of the matches.

The Load Manager module. This module enables us
to store all relevant information related to a network dataset

Figure 3: The PANDA GUI.

Figure 4: Local level visualization of a match.

such as the edge relations, node labels, and precalculated
unique labels within each network. When a user selects a
network to query, it loads the network data and associated
information in Panels 2 and 3.

The Layout Manager module. The key goal of this
module is to generate the “map-view” of a network dataset
by utilizing a graph layout algorithm and to store the coor-
dinates of each node in Panel 3 off-line for fast generation of
the network map during query formulation. In this demon-
stration, we use the sfdp of GraphViz for generating the
layout. This module also leverages a linear-time k-core al-
gorithm [2] to calculate the coreness of each node in order
to adjust the size of the nodes accordingly to facilitate visu-
alization of the network structure. Given the result matches
of a ptq, the layout manager is also responsible for pinning
the location of each match on the network map (Panel 3) to
display their relative positions. When a user rolls over the
mouse on a pin, it shows the cost and rank of the correspond-
ing match. If she clicks on a pin, it will display the details
of the matching result in a separate window (Figure 4).

The PTQ Editor module. This module facilitates vi-
sual formulation of a ptq in Panel 4. Specifically, a user
may drag a node label from Panel 2 and drop it in Panel 4
to create a node of a query component. An edge between
a pair of query nodes is constructed by left and right click-
ing on them. Once she clicks the "Run" button (Panel 1),
the number of query components in the ptq is checked, and
unique colors are assigned to them. For example, in Fig-
ure 3, the ptq contains three query components. Hence,
three unique colors are assigned to them.

The PTQ Processor module. Given a ptq formulated
using the gui, this module aims to process it efficiently.
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That is, given a network G = (V,E), a ptqQP = (q1, . . . , q`)
where qi is a query component, and a positive integer k,
the goal of this module is to find the top-k minimal cost
partial topology-based matchings of QP in G, denoted by
M1, . . . ,Mk, where cost(M1) ≤ cost(M2) ≤ . . . ≤ cost(Mk).
Intuitively, the cost of a match (i.e., cost(M)) is the sum
of weights of all edges that do not “belong” to matching
subgraphs of the query components. Consequently, it mea-
sures the total cost to connect the matching subgraphs.
This problem is NP-hard [5]. To tackle this challenge, the
ptq processor implements three key submodules, namely,
matching subgraph generation, merged graph construction,
and matching results generation, which we shall elaborate
below. Based on this framework, this module implements
three variants of the ptq processing algorithm, namely, sen-
panda, po-panda, and simpo-panda [5].

sen-panda is an exact algorithm based on Group Steiner
Tree (gst) [1] and is particularly suitable for applications
where the underlying network data is not very large and re-
sult quality is paramount. On the other hand, po-panda
exploits a novel label propagation-based technique to gen-
erate approximate results with a tight performance guar-
antee. Both of these algorithms find matching subgraphs of
the query components using subgraph isomorphism, which is
an NP-complete problem. To tackle this challenge, simpo-
panda extends po-panda by leveraging subgraph simula-
tion [4], which runs in cubic time, to enhance the efficiency
and scalability of the ptq processor without compromising
on the result quality.
The Matching Subgraph Generation submodule. Given G

and a ptq QP = (q1, . . . , q`), this submodule finds a set of
matching subgraphs for each query component qi, denoted
as smi = {g1, . . . , gj}, such that ∀g ∈ smi, qi matches g and
g is a subgraph of G. In total, we can get ` sets of matching
subgraphs for all query components, {sm1, . . . , sm`} where
sm = sm1 ∪ · · · ∪ sm`. For sen-panda and po-panda, the
current version of panda implements TurboIso [3], a state-
of-the-art technique to find exact subgraph matches via sub-
graph isomorphism. Note that nodes of a matching sub-
graph g may match nodes in more than one query compo-
nents of QP . For example, consider the ptq QP and the net-
work G in Figures 5(a) and 5(b), respectively. The identifier
of each node is shown within it and its label is in parenthesis
in its vicinity. In the sequel, we shall refer to a node v with
identifier i as vi. Each edge in G is labeled by its weight.
For q1 there are three matching subgraphs in G. That is,
sm1 = {g1, g2, g3} where Vg1 = {v2, v5}, Vg2 = {v7, v8} and
Vg3 = {v7, v10}. Similarly, there are two subgraphs in G
that are isomorphic to q2. Hence, sm2 = {g4, g5} where
Vg4 = {v5, v6, v9} and Vg5 = {v10, v11, v12}. Lastly, q3 only
matches node v4 in G, i.e., sm3 = {g6} where Vg6 = {v4}.

Observe that both po-panda and sen-panda utilize ex-
pensive subgraph isomorphism to implement this submod-
ule. simpo-panda, on the other hand, replaces the subgraph
isomorphism-based strategy with subgraph simulation-based
one. Note that all matching results of subgraph isomorphism
are contained in the results of subgraph simulation. Specif-
ically, it finds all connected simulation subgraphs using the
simulation matching pairs.
The Merged Graph Construction submodule. Due to over-

lapping nature of matching subgraphs, we need a systematic
way to represent sm in order to facilitate efficient search for
result matches of QP . This submodule addresses this issue

by merging the matching subgraphs in sm into a set of spe-
cial nodes called merged nodes. Using these merged nodes, it
constructs a new connected graph called merged graph from
G by “hiding” sm via merged nodes.

Intuitively, a merged node s /∈ V represents an aggregation
of one or more matching subgraphs, and is annotated with a
set of labels Υs that has different meaning with the label set
of nodes. Υs represents indexes of the query component(s)
whose matching subgraphs are contained in the aggregated
subgraph of s. The aggregated subgraph is referred to as the
inner graph of s, denoted by Is = (Vs, Es). Note that if a
matching subgraph g is non-overlapping or disjoint to other
subgraphs in sm, it is represented by a merged node s whose
inner graph Is is identical to g. For example, reconsider
Figure 5. Since Vg1 ∩ Vg4 6= ∅, Vg2 ∩ Vg3 ∩ Vg5 6= ∅, and
g6 is disjoint, we can represent these matching subgraphs
with three merged nodes s1, s2, and s3, respectively. Thus,
Is1 = g1 ∪ g4, Is2 = g2 ∪ g3 ∪ g5, and Is3 = g6. The dotted
circles in Figure 5(b) show these inner graphs. Furthermore,
Υs1 = {1, 2}, Υs2 = {1, 2}, and Υs3 = {3}. The outer edges
of the merged nodes s1, s2, and s3 are {(v2, v1), (v6, v1)},
{(v7, v3)}, and {(v4, v1)}, respectively.

Note that in simpo-panda a set of connected simulation
subgraph can be represented by merged nodes similar to
the aforementioned way isomorphic matching subgraphs are
represented in po-panda and sen-panda. However, now the
inner graph of a merged node may not necessarily contain
isomorphic matches to a query component.

Given the set of merged nodes S = {s1, . . . , sn}, it trans-
forms G to a merged graph H = (VH , EH) by substituting
the inner graphs with their corresponding merged nodes. In
H, it maintains the minimum weight of the edge from a
merged node s to another node v in G from all outer edges
of s that are connected to v. For example, consider the inner
graphs in Figure 5(b). Figure 5(c) shows the merged graph
by substituting the inner graphs with the merged nodes s1,
s2, and s3 and maintaining the minimum-weight outer edges.
Note that the outer edges will be utilized by the next sub-
module to search for the shortest path between a pair of
merged nodes.

The Matching Results Generation submodule. It finds short-
est paths in the merged graph to connect matching sub-
graphs (which are contained in merged nodes) for different
query components in order to progressively search for top-k
matching results of QP . It implements three different strate-
gies that correspond to the three algorithms.

sen-panda generates a set of single-label merged graphs
(smg) from H, where every merged node in each smg has
only one label (i.e., |Υs| = 1). That is, it matches exactly
one query component. These smgs represent all valid label
combinations of merged nodes with multiple labels. This
enables us to impose the restriction that the inner graph of
a merged node in each smg can only have matching sub-
graphs of a single query component. Consequently, it can
find the top-k matches in each smg by using an existing gst
algorithm [1] and rank them globally.

Although the matching results generation strategy of sen-
panda can find the best solution, it becomes prohibitively
expensive as the number of query components and network
size increase due to the invocation of the gst algorithm ex-
ponential number of times for potentially exponential num-
ber of smgs. The matching results generation strategy of
po-panda addresses this limitation by only searching the
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merged graph without generating any smgs. It leverages a
label propagation scheme that “propagates” labels (i.e., com-
ponent indexes) from the merged nodes in the merged graph
to other nodes along the shortest paths. Whenever a node
receives all ` labels of a ptq QP , it can be used to generate a
candidate matching tree to QP , which spans a set of at most
` different merged nodes to cover all query components. It
checks whether the candidate tree is valid to be a match
of the ptq and terminates after finding top-k valid matches
(if any). For example, po-panda searches the results of the
query directly on the merged graph in Figure 5(c). During
the label propagation process, merged nodes s1, s2 and s3
propagate their labels in the merged graph to other nodes
along their shortest paths. When node 3 receives all ` labels
(i.e., {1, 2, 3}), a candidate matching tree is generated based
on this node. The top-k matching results are retrieved from
the candidate trees. Specifically, this strategy guarantees
that the propagation can be achieved in polynomial time by
visiting each node at most twice.

In simpo-panda, as the inner graph of a merged node
may not contain any matching subgraph via subgraph iso-
morphism, the label exploration process of po-panda is ex-
tended to ensure that the merged nodes of a result tree are
valid. This requires that an inner graph should contain at
least one subgraph which is isomorphic to the corresponding
query component. Specifically, it performs subgraph isomor-
phism test on the inner graph of a merged node on demand
during the label propagation process. Note that the inner
graph of a merged node is usually significantly smaller than
the original network and in practice only a subset of all
merged nodes need to be tested.

The Results Visualizer module. This module is re-
sponsible for two-level visualization of matching results of
a ptq in real-time. At the global level, it sends locations
of the matches in the network to the Network Layout Man-
ager to display them on the network map using red pins (as
discussed earlier). At the local level, it displays each match
visually in response to the click on corresponding pin by a
user. Specifically, nodes of a matching query component are
highlighted with a circular shape, and colors of these nodes
are consistent with the colors of the corresponding query
components. In contrast, nodes connecting query compo-
nents are depicted with green octagons. When a user clicks
on a node in a matching result, the neighbors that are not in
it are displayed as gray circular nodes to enable exploration
of nearby nodes of the match. Figure 4 depicts an example
of local level visualization of a match of the ptq in Figure 3.

3. RELATED SYSTEMS AND NOVELTY
Existing exact and approximate subgraph search tech-

niques assume that a query graph is connected. Conse-
quently, they cannot be easily adapted to address ptqs.
Yang et al. [6] recently proposed a technique to process par-
tial connected queries comprising a connected graph query
and/or a set of single node components representing key-
word queries. In contrast, our ptq is more generic as it
allows a set of query components where each connected com-
ponent can be of any size and not simply a node represent-
ing a keyword query. Furthermore, this approach processes
these queries by inserting a set of implicit edges where each
edge connects a pair of nodes from different query compo-
nents. However, such strategy is expensive as shown in [5].
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Figure 5: Merged graph.

4. DEMONSTRATION OBJECTIVES
panda is implemented in Java JDK 1.8. Our demonstra-

tion will be loaded with a few real datasets (e.g., citation
network, Amazon co-purchase network, Yeast ppi network)
with different sizes (thousands to millions of nodes). Exam-
ple ptqs on each of these networks will be presented. Users
can also write their own ad-hoc queries.

The audience will be requested to draw a query graph
for a query given to them in natural language (English).
Through this interaction, they will appreciate the difficulty
in formulating a connected query graph and the need for ptq
processing framework. Specifically, the gui of panda shall
assist users in gaining such experience. Through the ptq
Editor and Results Visualizer modules, one will be able to
interactively formulate a ptq due to the difficulty in formu-
lating connected query graphs and view the result matches
at global and local levels as well as interactively explore
neighborhoods of specific parts of result matches in real-
time (Figure 4). The audience shall also be able to gain dif-
ferential experience on runtime and result quality of exact
and approximate ptq algorithms (sen-panda, po-panda,
and simpo-panda) by formulating a variety of ptqs (hav-
ing different number of query components) on networks with
different sizes. Specifically, they will be able to experience
that simpo-panda can efficiently generate good quality re-
sults on large networks. Finally, we shall also demonstrate
how panda can be utilized to address the keyword search
problem as a keyword query is a special case of ptq (i.e.,
each query component contains a single vertex).

A short video to illustrate the aforementioned features of
panda is available at https://youtu.be/xplZ6SjDRmU.
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