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ABSTRACT
Modern machine learning services and systems are complicated
data systems — the process of designing such systems is an art
of compromising between functionality, performance, and quality.
Providing different levels of system supports for different function-
alities, such as automatic feature engineering, model selection and
ensemble, and hyperparameter tuning, could improve the quality,
but also introduce additional cost and system complexity. In this
paper, we try to facilitate the process of asking the following type
of questions: How much will the users lose if we remove the support
of functionality x from a machine learning service?

Answering this type of questions using existing datasets, such
as the UCI datasets, is challenging. The main contribution of this
work is a novel dataset, MLBench, harvested from Kaggle compe-
titions. Unlike existing datasets, MLBench contains not only the
raw features for a machine learning task, but also those used by
the winning teams of Kaggle competitions. The winning features
serve as a baseline of best human effort that enables multiple ways
to measure the quality of machine learning services that cannot be
supported by existing datasets, such as relative ranking on Kaggle
and relative accuracy compared with best-effort systems.

We then conduct an empirical study using MLBench to under-
stand example machine learning services from Amazon and Mi-
crosoft Azure, and showcase how MLBench enables a comparative
study revealing the strength and weakness of these existing ma-
chine learning services quantitatively and systematically. The full
version of this paper can be found at arxiv.org/abs/1707.09562
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1. INTRODUCTION
Modern machine learning services and toolboxes provide func-

tionalities that surpass training a single machine learning model.
Instead, these services and systems support a range of different
machine learning models, different ways of training, and auxiliary
utilities such as model selection, model ensemble, hyperparamter
tuning, and feature selection. Azure Machine Learning Studio [1]
and Amazon Machine Learning [2] are prominent examples.
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Motivating Questions: How good is good? The ongoing advance-
ment of machine learning services raises some natural questions,
from the perspectives of both service users and providers. We are
currently hosting a similar service as Azure Machine Learning Stu-
dio, namely ease.ml [31], to our local users at ETH Zurich, and
this work is motivated by the following two questions.
• User: How good are machine learning services such as Azure
Machine Learning Studio and ease.ml? We were unable to pro-
vide our user (a biologist) with a good answer, because we did not
have a reasonable measure of “good” that is easy to convey.
• Provider (Us): Do we need to provide more machine learning
models on ease.ml (than Azure provides) to our local user? We
were unable to answer this question because we did not know how
to reasonably measure the potential improvement on accuracy for a
given machine learning task.

Baseline Approaches. We are not satisfied with two strategies: (1)
Run a standard dataset from the UCI repository [21] and report the
absolute accuracy, or (2) run an existing system (e.g., scikit-learn)
on a standard dataset and report the difference (i.e., relative accu-
racy) between it and Azure Machine Learning Studio. Neither the
absolute accuracy nor the relative accuracy over a baseline system
reveals the full picture of a machine learning service as they rely on
the hardness of the given machine learning task and the maturity of
the baseline system, which are often opaque to our users.
MLBench. In this paper, we present MLBench, a novel dataset
that we constructed to benchmark machine learning systems and
services. The goal of MLBench is to provide a quantitative qual-
ity measure to answer questions such as what would users lose
compared with a best-effort baseline? To construct MLBench,
we first collected real-world datasets and best-effort solutions har-
vested from Kaggle competitions, and then developed multiple per-
formance metrics by comparing relative performance of machine
learning services with top-ranked solutions in Kaggle competitions.
An Empirical Study. We present an example use case of MLBench
by conducting an empirical study of two online machine learning
services, i.e., Azure Machine Learning Studio and Amazon Ma-
chine Learning. As we will see, MLBench provides a way for us
to decouple multiple factors having impact on the quality: each in-
dividual machine learning model and other external factors such as
feature engineering and model ensemble.
Premier of Kaggle Competitions. Kaggle [3] is a popular plat-
form hosting a range of machine learning competitions. Compa-
nies or scientists can host their real-world applications on Kaggle;
Each user has access to the training and testing datasets, submits
their solutions to Kaggle, and gets a quality score on the test set.
Kaggle motivates users with prizes for top winning entries. This
“crowdsourcing” nature of Kaggle makes it a representative sam-
ple of real-world machine learning workloads.
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Summary of Technical Contributions.
C1. We present the MLBench benchmark. One prominent feature
of MLBench is that each of its datasets comes with a best-effort
baseline of both feature engineering and machine learning models.
C2. We propose a novel performance metric based on the notion of
“quality tolerance” that measures the performance gap between a
given machine learning system and top-ranked Kaggle performers.
C3. We showcase one application of MLBench by evaluating two
online machine learning services: Azure Machine Learning Studio
and Amazon Machine Learning. Our experimental result reveals
interesting strengths and limitations of both clouds. Detailed anal-
ysis of the results further points out promising future directions to
improve both machine learning services.
Scope of Study. We study three most popular machine learning
tasks: binary classification, multi-class classification, and regres-
sion. Due to space limitation, we focus our discussion on binary
classification. As we will see, even with this constrained scope,
there is no simple, single answer to the main question we aim to an-
swer. We also briefly cover multi-class classification and regression
but leave the complete details to the full version of this paper [32].
Reproducibility. We made MLBench publicly available at the fol-
lowing website: http://ds3lab.org/mlbench.
Overview. The rest of the paper is organized as follows. We start
by having an in-depth discussion on why existing datasets such as
the UCI repository are not sufficient. We then present our method-
ology and the MLBench benchmark in Section 3. We next present
experimental settings and evaluation results in Section 4-6. We
summarize related work in Section 8 and conclude in Section 9.

2. MOTIVATION
Over the years, researchers have applied many techniques on the

UCI datasets [21] and shown incremental improvements. Unfortu-
nately, using UCI datasets was insufficient for the questions from
both our users and ourselves as machine learning service providers.

We have two goals for our benchmark in this work:
• It should allow users and service providers to fairly compare dif-
ferent machine learning services;
• It should allow users and service providers to understand the lim-
itations of their services.
A benchmark like the UCI repository can satisfy the first goal but
not the second. To see this more clearly, consider the case that we
simply use n datasets D1, ..., Dn from the UCI database. For a
machine learning service that provides m models M1, ..., Mm, we
are able to evaluate the accuracy of each model on each dataset:
a(Di,Mj), for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Based on these
accuracy numbers, we are able to compare the relative performance
of the models on different datasets. Similarly, we can make this
relative comparison between different machine learning services.

However, we remain clueless about the absolute performance
of the machine learning services. Consider two machine learning
services M1 and M2. Given a dataset D, let a1 = 0.82 and
a2 = 0.81 be the best accuracyM1 andM2 can achieve over D.
What we can conclude based on a1 and a2 is thatM1 outperforms
M2 over D. Nonetheless, there are several natural questions that
both service users and providers may further ask here:
• How good is the accuracy a1 (resp. a2) observed byM1 (resp.
M2)? Is a1 a really good number over D or is it far behind the
state of the art?
• How much improvement over a1 (resp. a2) can we get by in-
cluding more models inM1 (resp.M2)?

• How significant is the gap between a1 and a2? Essentially, how
difficult is the learning task defined over D? (An accuracy differ-
ence of 0.01 may mean a lot if D is a tough case.)
None of the above questions can be answered satisfactorily with-
out a comparison against the frontier of current machine learning
techniques. As far as we know, MLBench is the first, rudimentary
attempt to provide a baseline for reasoning and understanding the
absolute performance of machine learning services.

One alternative approach to MLBench could be to stay with an
existing benchmark such as the UCI dataset but try to find the best
features and models – not only those models that have been pro-
vided by machine learning services – and run them for each dataset.
We see at least two potential shortcomings of this approach. First,
it is costly to engineering features to achieve the best accuracy for
each UCI dataset. Second, it is expensive to collect all existing
models — there are just too many and one may have to resort
to a shortened list (e.g., models that have been implemented by
Weka [27]). Moreover, it remains elusive that how representative
the datasets in UCI and the models in Weka are — they are defi-
nitely quite different from the datasets and models that people have
used in Kaggle competitions. It is definitely important to explore
alternatives to MLBench, but it is beyond the scope of this paper.

3. THE MLBENCH BENCHMARK
In this section, we present details of the MLBench benchmark

constructed by harvesting winning code of Kaggle competitions.

3.1 Kaggle Competitions
Kaggle hosts various types of competitions for data scientists.

There are seven different competition categories, and we are partic-
ularly interested in the category “Featured” that aims to solve com-
mercial, real-world machine learning problems. For each compe-
tition, Kaggle provides a necessary description of its background,
training and testing datasets, evaluation metric, and so on. These
competitions are online only for a while, and Kaggle allows partici-
pants to submit multiple times during that period. Kaggle evaluates
and provides a score for each submission (shown as a public leader
board). Participants can specify their final submissions before a
competition ends, and a final, private leader board is available after
the competition ends. The winners are determined based on their
rankings on the private leader board. In this paper, we treat the top
ten on the private leader board as “winning code,” and we look for
the one ranked the highest among the top ten.

3.2 Methodology
Benchmarking systems fairly is not an easy task. Three key

aspects came to mind when designing a benchmark for machine
learning services:
(1) We need to measure not only the performance (speed) but also
the quality (precision). The two are coupled, and their relative im-
portance changes with respect to the user’s budget and tolerance for
suboptimal quality.
(2) The quality of an application depends on both feature engineer-
ing and the machine learning model. These two factors need to be
decoupled to understand the quality provided by a given machine
learning service.
(3) To compare machine learning services with the best effort of a
given machine learning task, we need to construct a strong baseline
for the latter. If this baseline is not strong enough, our result may
be overly optimistic regarding machine learning services.

Starting from these principles, we made a few basic decisions
that we shall present next.
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3.2.1 Methodology
We collect top winning code for all competitions on Kaggle. We

then filter them to select a subset to include in MLBench with the
following protocol. For the code that we are able to install and fin-
ish running within 24 hours, we further collect features extracted
by the winning code. The features are then used for training and
testing models provided by the machine learning services and the
Kaggle winning solution. We also include datasets constructed us-
ing raw features (see Section 3.3).

Discussion. At first glance, our methodology is quite trivial.
Indeed, there is little novelty in the procedure itself, though the
engineering effort involved is substantial. (It took us more than
nine months to finish the experimental evaluation presented in Sec-
tion 5.) On second thought, one may wonder what the point is of
spending so much effort.

To see the subtlety here, consider an alternative approach that is
much easier to implement: Take one well-known dataset (or several
datasets) such as those from the UCI Machine Learning Repository,
run a standard feature selection algorithm, and compare the perfor-
mance of a machine learning service with that of standard machine
learning libraries (e.g., Weka [27]) on this dataset. There are, how-
ever, a couple of caveats in this approach. First, it is unclear how
challenging the learning problem (associated with the dataset) is.
There may be subjective justification but no objective metric of the
difficulty. Second, it is questionable whether the models covered
by standard libraries represent the state of the art. Depending on
the popularity and maturity of the libraries, coverage may vary dra-
matically. Third, feature engineering and model selection are more
of an art mastered only by human experts. If we ignore both, our
result might be overly optimistic or overly pessimistic for machine
learning service. (Section 2 provides more detailed analysis.)

The intuition behind our methodology is simple: the top win-
ning code of Kaggle competitions represents the arguably best ef-
fort among existing machine-learning solutions. Of course, it is
biased by the competitions published on Kaggle and the solutions
provided by the participants. Nonetheless, given the high impact of
Kaggle competitions, we believe that using the winning code as a
performance baseline significantly raises the bar compared with us-
ing standard libraries and therefore reduces the risk that we might
be overly optimistic about the machine learning services. More-
over, given the “crowdsourcing” nature of Kaggle, the baseline will
keep up with the advancement of machine learning research and
practice, perhaps at a much faster pace than standard libraries can.

3.2.2 Quality Metric
Our methodology of adopting Kaggle winning code as a base-

line raises the question of designing a reasonable quality metric.
To measure the quality of a model deployed on machine learning
services, we introduce the notion of “quality tolerance” (of a user).

DEFINITION 1. The quality tolerance of a user is τ if s/he can
be satisfied only by being ranked among the top τ%, assuming that
s/he uses a model M provided by the service to participate in a
Kaggle competition.

Of course, the “user” in Definition 1 is just hypothetical. Essen-
tially, quality tolerance measures the performance gap between the
machine learning service and the top-ranked code of a Kaggle com-
petition. A lower quality tolerance suggests a more stringent user
requirement and therefore a more capable machine learning service
if it can meet that quality tolerance.

Based on the notion of quality tolerance, we are mainly inter-
ested in two performance metrics of a model M :

Figure 1: Histograms of the AUC scores on private leader board for
two example datasets D-PHY and D-SMR-r.

• Capacity, the minimum quality tolerance τmin that M can meet
for a given Kaggle competition T ;
• Universality, the number of Kaggle competitions that M can
achieve a quality tolerance of τ .
Intuitively, capacity measures how highM can be ranked in a Kag-
gle competition, whereas universality measures in how many Kag-
gle competitions M can be ranked that high.

We use c(M,T ) and u(M, τ) to denote the capacity and τ -
universality of M . Moreover, we use K(M, τ) to denote the set of
Kaggle competitions whose quality tolerance τ have been reached
by u(M, τ), namely,

u(M, τ) = |K(M, τ)|.

Similarly, if a machine learning service M provides n models
{M1, ...,Mn} (n ≥ 1), we can define the capacity of M with
respect to a Kaggle competition T as

c(M, T ) = min
Mi∈M

c(Mi, T ), 1 ≤ i ≤ n,

and define the τ -universality ofM as

u(M, τ) = |
⋃n

i=1
K(Mi, τ)|.

Clearly, the capacity ofM over T is the capacity of the best model
that M provides for T , whereas the τ -universality of M is the
number of Kaggle competitions in whichM can meet quality tol-
erance τ (with the best model it can provide).

Finally, if there are m Kaggle competitions T = {T1, ..., Tm},
we define the capacity ofM over T as

c(M, T ) = max
Tj∈T

c(M, Tj), 1 ≤ j ≤ m.

It measures the uniformly best quality tolerance thatM can meet
for any of the competitions in T .

In the rest of this paper, we will use the notation c(M), u(M),
c(M), and u(M) whenever the corresponding quality tolerance
and Kaggle competition(s) are clear from the context.

3.2.3 Limitations and Discussion
Our motivation of using ranking as performance metric is to pro-

vide a normalized score across all datasets. However, ranking itself
does not tell the full story. One caveat is that ranking measures the
relative performance and may be sensitive to the change in the un-
derlying, absolute metric, such as the “area under curve” (AUC)
score that is commonly used by Kaggle competitions.1 To illus-
trate this, Figure 1 presents the histograms (i.e., distributions) of
the AUC scores in two Kaggle competitions (see Section 3.4 for
the details of the competitions). The red, green, and blue lines cor-
respond to the teams ranked at the top 95%, 50%, and 5%. The
distance between the scores of top 50% (green) and top 5% (blue)
1AUC computes the area under the “Receiver Operating Character-
istic” (ROC) curve. A perfect model will have an AUC score of 1,
whereas random guessing will result an AUC around 0.5 [14].
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Table 1: Statistics of Kaggle Competitions

Statistics of Kaggle Competitions Number
Total Competitions 267

Competitions with Winning Code 41
Competitions without Winning Code 226

shows the sensitivity — for D-PHY, ranking is quite sensitive to
small changes in AUC as most of the teams have similar scores.
Therefore, when benchmarking machine learning services, it is im-
portant to look at both ranking and absolute quality. In this paper,
our analysis will always base on both.
Notes on Alternative Metrics. There can be various other choices
except for the capacity and universality metrics we chose. Indeed,
we never claimed that our choice is the best or should be unique,
and it is actually our intention to encourage people to come up with
their own performance metrics on top of MLBench, customized for
their own situations and purposes. Our contribution here is to give a
concrete example of how such a “fair” comparison could look like.

Having said this, we do think the capacity and university metrics
we used have some advantages over other metrics, such as those
based on relative performance ratios over Kaggle winning code,
which are probably more intuitive.

First, both capacity and university are based on ranking on the
Kaggle leaderboard, which is the criterion used by a Kaggle compe-
tition when deciding the winners. This is a more stringent criterion
compared with ones based on relative performance ratios. Because
the competitiveness of Kaggle competitions varies vastly (some are
very challenging whereas the others are relatively easy – see Ta-
ble 6(a)), a machine learning service that achieves 90% of AUC
scores of the winning codes in two binary classification competi-
tions can be ranked quite differently.

Second, Kaggle uses different performance evaluation metrics
for different types of competitions, or even within the same type of
competitions. For example, while binary classification problems
typically use AUC score as the metric, regression problems use
metrics varying from RMSE, MAE, Gini, and so on. A machine
learning service that achieves 90% of the AUC score of the win-
ning code in a binary classification competition and that achieves
90% of the RMSE of the winning code in a regression competition
then mean very differently. Reporting these relative performance
numbers to users of machine learning services, many of whom are
not machine learning experts, may mislead them. Rankings, on
the other hand, are semantically consistent regardless of the type
of competition: A machine learning service ranks within the top
10% of the participants on the leaderboard means exactly what it
literally means, regardless of whether it is a binary classification,
multi-class classification, or regression competition.

Of course, there are limitations of the ranking-based metrics we
used. As we have mentioned, there is an apparent robustness is-
sue given that rankings depend on particular participants of Kag-
gle competitions. We admit that this is certainly problematic for a
competition if there are only a few participants. Nevertheless, the
competitions we have included in MLBench did involve a fairly
reasonable number of participating teams. However, even if the
number of participants is large, there is still a chance that most
of the participants are incompetent — outperforming those partic-
ipants is fairly easy but can lead to a high ranking in the leader-
board. We currently have no way to distinguish such cases, and we
have implicitly relied on Kaggle competition organizers/publishers
to ensure the quality/attractiveness of their competitions.

Table 2: Kaggle Competitions with Winning Code

Tasks of Kaggle Competitions Number
Binary Classification 13

Multi-class Classification 9
Regression 9

Others 10

3.3 MLBench Overview
MLBench is curated from Kaggle competitions with or without

winning code. We describe the protocol of curation as follows.
Datasets from Winning Code. As shown in Table 1, we collected
267 Kaggle competitions in total and found winning code for 41
of these competitions. We are unable to find winning code for the
remaining 226 competitions. Fortunately, the 41 competitions with
available winning code already exhibit sufficient diversity to eval-
uate various aspects of machine learning services. Table 2 further
summarizes the types of machine learning tasks covered by these
41 competitions with winning code. We next focus on the 13 binary
classification competitions due to space constraint.

Binary Classification Competitions. We ran the winning
code of the 13 binary classification competitions on Microsoft
Azure for the purpose of extracting the features used by the win-
ning code. We failed to run the winning code for “Avito Context Ad
Clicks.” For “Santander Customer Satisfaction” and “Higgs Boson
Machine Learning Challenge,” the code cannot be finished on an
Azure machine with a 16-core CPU and 112GB memory. There-
fore, there were 10 competitions for which we finished running the
winning code successfully. We further excluded datasets whose
inputs are either three-dimensional features (e.g., 3D medical im-
ages) or features that cannot be extracted and saved successfully.2

Moreover, the winning code of “KDD Cup 2014” generated two
sets of features — it uses the ensemble method with two models.
This results in 7 datasets with features extracted by the winning
code.
Beyond Winning Code. We also constructed datasets using the raw
features from Kaggle (details in Section 3.4), which results in 11
additional datasets. Specifically, we include all binary competi-
tions ended by July 2017 that (1) use AUC as evaluation metric, (2)
can be joined by new users, (3) have datasets available for down-
load, (4) still allow for submission and scoring, (6) do not contain
images, videos, and HTML files, and (5) whose total size does not
exceed Azure’s limitation.3

Statistics of Datasets. In total, MLBench contains 18 datasets for
binary classification with 7 datasets having both features produced
by winning code and the raw features provided by the competition.
We summarize the statistics of the datasets in Table 3. We can see
a reasonable diversity across the datasets in terms of the size of the
training set, the size of the testing set, and the number of features.
Moreover, the ratio between the sizes of the training set and testing
set varies as well. For example, D-VP has a testing set 10 times
larger than the training set, which is quite different from the vanilla
setting, where the training set is much larger.

3.4 Dataset Details
We present details about the datasets listed in Table 3. For each

dataset, we first introduce the background of the corresponding
2We excluded those datasets with 3D features because we cannot
directly use the raw data to train models provided by machine learn-
ing services — additional feature engineering is mandatory.
3https://docs.microsoft.com/en-us/azure/machine-learning/
studio/faq
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Table 3: Statistics of datasets for binary classification (“-r” indi-
cates datasets with raw feature). See Section 3.4 for details.

Dataset Training Set Test Set # Features Training Size Test Size
D-SCH-r 86 119,748 410 0.3MB 488MB
D-PIS-r 5,500 5,952 22 1.2MB 1.29MB
D-EG-r 7,395 3,171 124 21MB 9MB
D-VPr-r 10,506 116,293 53 2MB 19MB
D-AEA-r 32,769 58,921 9 1.94MB 3.71MB
D-SCS-r 76,020 75,818 369 56.6MB 56.3MB
D-SMR-r 145,231 145,232 1,933 921MB 921MB
D-GMC-r 150,000 101,503 10 7.21MB 4.75MB
D-HQC-r 260,753 173,836 297 198MB 131MB
D-KDD-r 619,326 44,772 139 571MB 40.7MB
D-PBV-r 2,197,291 498,687 52 181MB 76MB
D-SCH 86 119,748 410 0.3MB 488MB
D-EG 7,395 3,171 29 2.59MB 1.35MB
D-VP 10,506 116,293 17 0.8MB 9.1MB
D-AEA 32,769 58,921 135 54MB 97MB
D-PHY 38,012 855,819 74 28.9MB 859MB
D-KDD2 131,329 44,772 100 105MB 36MB
D-KDD1 391,088 44,772 190 282MB 32MB

Kaggle competition. We then describe the features used by the win-
ning code we found, which characterize the datasets themselves, as
well as the models and algorithms it adopts.

• MLSP2014-Schizophrenia Classification Challenge (D-SCH
and D-SCH-r): In this competition, multimodal features derived
from brain magnetic resonance imaging (MRI) scans and labels
of the training data are provided. The goal of this competition is
to build machine learning models that can predict if a person is a
“healthy control” or “schizophrenic patient” in the testing data.4

We use the winning code from Karolis Koncevicius [4]. Interest-
ingly, the winning code uses the same features as the raw data pro-
vided by Kaggle. The algorithm it uses is distance weighted dis-
crimination [35]. We abbreviate the constructed dataset as D-SCH.
Another dataset is constructed using the raw data provided by Kag-
gle and is referred to as D-SCH-r, although D-SCH and D-SCH-r
contain the same features in this particular case.
• Influencers in Social Networks (D-PIS-r): In this competition,
each data point describes the features extracted based on the Twitter
activities of two individuals. In the training dataset, the data points
are labelled to indicate which one of the two individuals is more
influential on a social network. The goal of this competition is to
predict the more influential individual from the given features of
2 individuals.5 No winning code is available for this competition.
We take the raw data provided by Kaggle and construct the dataset
D-PIS-r.
• StumbleUpon Evergreen Classification Challenge (D-EG and
D-EG-r): In this competition, URLs and their corresponding raw
contents are given. The goal of this competition is to build a clas-
sifier that can label a URL (i.e., Web page) as either “ephemeral”
(i.e., pages that are only relevant for a short period of time, such
as news articles) or “evergreen” (i.e., pages that maintain a time-
less quality, such as Wikipedia articles). 6 We use the winning
code from Marco Lui [5]. It extracts features from raw HTML
documents and uses only text-based features. The most important
step is a stacking-based approach that combines the generated fea-
tures [33]. The algorithm the winning code uses is logistic regres-
sion. Features used by this winning code are stored by extracting
the input to the logistic regression classifier. We abbreviate this
constructed dataset as D-EG. Again, we construct another dataset
D-EG-r using the raw features.

4https://www.kaggle.com/c/mlsp-2014-mri
5https://www.kaggle.com/c/predict-who-is-more-influential-in-a-social-network.
6https://www.kaggle.com/c/stumbleupon

• West-Nile Virus Prediction (D-VP and D-VP-r): In this com-
petition, the participants are given weather, location, testing, and
spraying data to predict whether or not West Nile Virus is present. 7

We use the winning code from [6], which added three new fea-
tures to the raw dataset. The predictions are initialized according
to a normal distribution. Each prediction is then multiplied by var-
ious coefficients obtained from other information related to the tar-
get (e.g., geographical information). The predictions are then nor-
malized. We abbreviate this dataset as D-VP. The corresponding
dataset using raw features is denoted as D-VP-r.
• Amazon.com-Employee Access Challenge (D-AEA and D-
AEA-r): The goal of this competition is to create an algorithm
that can predict approval/denial for an unseen employee, based on
historical records about approval/denial of employee’s requests to
access certain resources.8 We use the winning code from Owen
Zhang [7]. It first converts the original categorical features to nu-
merical features. It then builds six models from subsets of the
features as well as features obtained via post-processing (e.g., ag-
gregation). The final prediction is generated by an ensemble of
predictions from individual models. The algorithms it uses are
GBM (generalized boosted regression modeling) [37], random for-
est [15], extremely randomized trees [26], and glmnet (lasso and
elastic-net regularized generalized linear models) [25]. Features
used by this winning code are stored by unioning all features used
by the models. We abbreviate this constructed dataset as D-AEA.
Correspondingly, the dataset containing only the raw data from
Kaggle is denoted as D-AEA-r.
• Santander Customer Satisfaction (D-SCS-r): In this compe-
tition9, the objective is to identify if a customer is unsatisfied with
their experience in dealing with the Santander bank. A list of nu-
meric features as well as a label are provided to the participants.
There is no winning code available for this competition. We use
the raw data provided by Kaggle to construct the dataset D-SCS-r.
• Springleaf Marketing Response (D-SMR-r): A large set of
anonymized features describing a customer are provided in each
entry of the training dataset. The goal of this competition is to use
the features of the customer to predict whether s/he will respond to
a direct mail offer.10 No winning code is available for this compe-
tition. We therefore construct the dataset D-SMR-r using the raw
data from Kaggle.
• Give me some credit (D-GMC-r): In this competition11, the
participants are asked to help a bank to predict the probability that
a client will experience financial distress in the next two years. No
winning code is available. We take the raw data from Kaggle and
denote the dataset as D-GMC-r.
• Homesite Quote Conversion (D-HQC-r): In this competition12,
the participants are asked to predict whether or not a customer will
purchase the quoted product from an insurance company. The train-
ing data includes anonymized features covering information about
the product, the client, the property going to be assured, and the
location. We use the raw data to create the dataset D-HQC-r.
• KDD Cup 2014-Predicting Excitement (D-KDD1, D-KDD2
and D-KDD-r): In this competition, the participants are asked to
help DonorsChoose.org identify projects that are exceptionally ex-
citing to the business, given all the related data about projects, do-

7https://www.kaggle.com/c/predict-west-nile-virus
8https://www.kaggle.com/c/amazon-employee-access-challenge
9https0.://www.kaggle.com/c/santander-customer-satisfaction

10https://www.kaggle.com/c/springleaf-marketing-response
11https://www.kaggle.com/c/GiveMeSomeCredit
12https://www.kaggle.com/c/homesite-quote-conversion

1224



nations, and so on. 13 We use the winning code from [8]. It builds
two diverse feature sets based on raw features and generated fea-
tures. These two diverse feature sets are then used to train two
different models: gradient boosting regressor and gradient boost-
ing machine. The final result is based on the ensemble of the two.
We abbreviate these two constructed datasets as D-KDD1 and D-
KDD2. As before, we also create a dataset that only contains the
raw data, denoted as D-KDD-r.
• Predicting Red Hat Business Value (D-PBV-r): The goal of
this competition14 is to identify customers with potential business
value. To achieve this goal, records of customer activities are pro-
vided to the participants. In addition, each customer is associated
with a set of features. There is no winning code for this competi-
tion. We construct the dataset D-PBV-r by joining the tables con-
taining raw data describing the activities and the features of the
customers.
• Flavours of Physics: Finding τ → µµµ (D-PHY): In this
competition, participants are given a list of collision events (of
two high-energy particle beams travelling at close to the speed of
light inside the Large Hadron Collider — the worlds largest and
most powerful particle accelerator) and their properties to predict
whether τ → 3µ decay happens in a collision or not.15 We use
the winning code from Gramolin [9]. It designs new features based
on original features. One original feature is not used because it
prevents passing of the agreement test.16 In addition, the winning
code does not use all the training data. Regarding the algorithm,
it uses only XGBoost [17]. It trains two different XGBoost mod-
els on different sets of features. The final result is an ensemble of
results obtained by the two models. The combination of two inde-
pendent classifiers enables it to pass the correlation test.17 Features
used by this winning code are stored by extracting the input to the
models. Then the features taken into different models are merged
and duplicated features are dropped. We abbreviate it as D-PHY.

There are missing values in the datasets D-PHY and D-KDD2. We
replace the missing values in these two datasets with the average
values of corresponding features and “N/A”, respectively, for our
experiments on Azure and Amazon. We refer the readers to the
full version of this paper for details of the datasets in MLBench for
multi-class classification and regression problems [32].

4. AN EXAMPLE MLBENCH USECASE
To showcase an application of MLBench, we evaluate the declar-

ative machine learning services provided by two major cloud ven-
dors: Microsoft Azure Machine Learning Studio and Amazon Ma-
chine Learning. We will use Azure and Amazon as shorthand. The
goal here is not to compare between these two services, instead, to
illustrate the process of using MLBench and the kinds of insights
one can get with this novel dataset. Again, we focus on binary clas-
sification problems. We first introduce the current APIs of Azure
and Amazon and then all machine learning models they provide.

4.1 Existing Cloud API
Both Azure and Amazon start by asking users to upload their

data, which can be in the form of CSV files. Users then specify the
machine learning tasks they want to run on the cloud. However,
Azure and Amazon offer different APIs, as illustrated below.

13https://www.kaggle.com/c/kdd-cup-2014-predicting-excitement-at-donors-choose
14https://www.kaggle.com/c/predicting-red-hat-business-value
15https://www.kaggle.com/c/flavours-of-physics
16https://www.kaggle.com/c/flavours-of-physics/details/agreement-test
17https://www.kaggle.com/c/flavours-of-physics/details/correlation-test

• Azure provides an API using which users specify the types of
machine learning models, such as (1) logistic regression, (2) sup-
port vector machine, (3) decision tree, etc. For each type of model,
Azure provides a set of default hyper-parameters for users to use
in an out-of-the-box manner. Azure also supports different ways
of automatic hyper-parameter tuning and provides a default range
of values to be searched for.
• Amazon provides an API by which users specify the types of
machine learning tasks, namely (1) binary classification, (2) mul-
ticlass classification, and (3) regression. For each type, Amazon
automatically chooses the type of machine learning models. For
now, Amazon always runs a logistic regression for binary clas-
sification [10]. Amazon further provides a set of default hyper-
parameters for logistic regression, but users can also change these
default values.

4.2 Machine Learning Models
In the following, we give a brief description of the machine

learning models provided by Azure and Amazon.

• Two-Class Averaged Perceptron (C-AP): It is a linear classifier
and can be thought of as a simplified neural network: there is only
one layer between input and output.18

• Two-Class Bayes Point Machine (C-BPM): It is a Bayesian
classification model, which is not prone to overfitting. The Bayes
point is the average classifier that efficiently approximates the the-
oretically optimal Bayesian average of several linear classifiers (in
terms of generalization performance) [29].
• Two-Class Boosted Decision Tree (C-BDT): Boosting is a well-
known ensemble algorithm that combines weak learners to form a
stronger learner (e.g., AdaBoost [24]). The boosted decision tree is
an ensemble method that constructs a series of decision trees [36].
Except for the first tree, each of the remaining trees is constructed
by correcting the prediction error of the previous one. The final
model is an ensemble of all constructed trees.
• Two-Class Decision Forests (C-DF): It is based on random de-
cision forests [30]. Specifically, it constructs multiple decision
trees that vote on the most popular output class.19

• Two-class Decision Jungle (C-DJ): This is an ensemble of
rooted decision directed acyclic graphs (DAGs). In conventional
decision trees, only one path is allowed from the root to a leaf. In
contrast, a DAG in a decision jungle allows multiple paths from the
root to a leaf [38].
• Two-Class Logistic Regression (C-LR): This is a classic clas-
sifier that predicts the probability of an instance by fitting a logistic
function.20 It is also the only classifier that Amazon supports.
• Two-Class Neural Network (C-NN): Neural networks are bio-
inspired algorithms that are loosely analogous to the observed be-
havior of a biological brain’s axons [28]. Specifically, the input
layer (representing input data) and the output layer (representing
answers) are connected by layers of weighted edges and nodes,
which encode the so-called activation functions.21

• Two-Class Support Vector Machine (C-SVM): SVM is an-
other well-known classifier [19]. It works by separating the data
with the “maximum-margin” hyperplane.22

18https://msdn.microsoft.com/en-us/library/azure/dn906036.aspx
19https://msdn.microsoft.com/en-us/library/azure/dn906008.aspx
20https://msdn.microsoft.com/en-us/library/azure/dn905994.aspx
21https://msdn.microsoft.com/en-us/library/azure/dn905947.aspx
22https://msdn.microsoft.com/en-us/library/azure/dn905835.aspx
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4.3 Hyper-parameter Tuning
Each machine learning algorithm consists of a set of hyperpa-

rameters to tune. The methodology we use in this paper is to rely
on the default tuning procedure provided by the machine learning
service. In the full version of this paper [32], we summarize the
hyper-parameters provided by the machine learning services. For
each machine learning model, we conduct an exhaustive grid search
on all possible parameter combinations.

Because Amazon only has the option of logistic regression (for
binary classification) and automatically tunes the learning rate, we
only tuned hyper-parameters for models provided by Azure. We
performed hyper-parameter tuning in an exhaustive manner: for
each combination of hyper-parameter values in the whole search
space, we ran the model based on that setting. The best hyper-
parameter is then selected based on the AUC score obtained with
five-fold cross validation. (AUC is the evaluation metric used by
all binary-classification competitions we included in MLBench.)

5. RESULTS ON WINNING FEATURES
We first evaluated the performance of Azure and Amazon as-

suming users have already conducted feature engineering and only
use the machine learning service as a declarative execution en-
gine of machine learning models. Our analysis in this section will
mainly focus on the seven datasets where winning code is available
(i.e., the datasets in Table 3 without the ‘-r’ suffix). We will discuss
the cases when raw features are used in Section 6.

5.1 Capacity and Universality
We first report the performance of Azure and Amazon, based

on the capacity and universality metrics defined in Section 3.2.2.
Figure 2 presents the result.

In Figure 2(a), the x-axis represents the quality tolerance, and the
y-axis represents the minimum number of models required if a ma-
chine learning service can achieve a certain tolerance level τ (i.e.,
a ranking of top τ%) for all seven datasets (i.e., a τ -universality
of seven). Figure 2(a) shows that, by only using C-SVM, Azure
can be ranked within top 50%. In addition, if we further include C-
AP and C-BDT, Azure can be ranked within top 31%. Moreover,
including more models cannot improve the bottom line anymore.
Note that this does not mean that the other models are useless —
they can improve on some datasets but not the one where Azure
observes the largest τ (i.e., the worst ranking).

The minimum τ shown in Figure 2(a) then implies the capac-
ity of a machine learning service. We observe that the capacity of
Azure is 31 (i.e., c(Azure) = 31), and the capacity of Amazon is
83 (i.e., c(Amazon) = 83). Under this measurement, state-of-the-
art machine learning services are far from competitive than delib-
erate machine learning models designed manually: With the goal
of meeting a τ -universality of seven, τ can only be as small as 31
for Azure (and 83 for Amazon). In other words, in at least one
Kaggle competition, Azure is ranked outside the top 30%, whereas
Amazon is ranked outside the top 80% on the leader board.

However, we note that this might be a distorted picture given the
existence of “outliers.” In Figure 2(b) and 2(c), we further present
results by excluding the datasets D-VP and D-KDD2. Although
the capacity of Amazon remains the same, the capacity of Azure
improves dramatically: c(Azure) drops to 7 by excluding D-VP
and further drops to 5 by excluding D-KDD2, which suggests that
Azure can be ranked within the top 10% or even the top 5% in most
of the Kaggle competitions considered.

Table 4: Capacity of Azure and Amazon on different datasets.

Dataset Azure (Model) Amazon Winning
D-SCH (313) 0.96 (C-BPM) 84.34 0.96
D-EG (625) 0.32 (C-AP) 52.16 0.64
D-VP (1306) 31.24 (C-BDT) 70.67 0.08
D-AEA (1687) 1.72 (C-BDT) 21.40 0.12
D-KDD2 (472) 6.99 (C-BDT) 13.77 0.42
D-KDD1 (472) 2.54 (C-LR) 6.14 0.42

Table 5: Capacity of the logistic regression model (C-LR) from
Azure and Amazon on different datasets.

Dataset Azure (C-LR) Amazon Winning
D-SCH (313) 7.03 84.34 0.96
D-EG (625) 0.32 52.16 0.64
D-VP (1306) 49.62 70.67 0.08
D-AEA (1687) 4.27 21.40 0.12
D-KDD2 (472) 41.95 13.77 0.42
D-KDD1 (472) 2.54 6.14 0.42

5.1.1 Breakdown and Analysis
We next take a closer look at how the machine learning services

perform in individual competitions. We note that not every winning
code we found is top-ranked. If the top-ranked code is not avail-
able, we seek the next available winning code (among the top 10)
on the leader board. We have several interesting observations.
Diversity of models is beneficial. An obvious difference be-
tween Azure and Amazon is that Azure provides more alternative
models than Amazon. While the reason for Amazon to provide
only logistic regression as the available model is unclear, the re-
sults presented in Figure 2 do suggest that the additional models
provided by Azure do help. In more detail, Table 4 compares the
capacity of Azure and Amazon on different datasets. We observe
that Azure always wins over Amazon in terms of capacity, often by
a large margin. The capacity of Azure over all the datasets is 31.24
(6.99 if excluding D-VP and 2.54 if further excluding D-KDD2)
versus 84.34 of Amazon, as shown in Figure 2.

Model selection is necessary. For a given dataset, the vari-
ation in terms of prediction quality is quite large across different
models. For example, by using the models provided by Azure on
the dataset “D-SCH,” the rank varies from 3 (as good as the winning
code we found) to 281 (ranked at the bottom 10% of 313 Kaggle
competition participants). This makes model selection a difficult
job for Azure users. (Amazon users do not have this problem, as
logistic regression is their only option.)

Hyperparameter tuning makes a difference. Both Azure
and Amazon provide logistic regression for binary classification.
However, Azure provides more knobs for hyper-parameter tuning.
Table 5 compares the capacity of the logistic regression model (“C-
LR”) provided by Azure and Amazon. Azure wins on most of the
datasets, perhaps due to more systematic hyper-parameter tuning.
(We do not know how Amazon tunes the learning rate for logis-
tic regression.) However, there is no free lunch: Hyper-parameter
tuning is time-consuming (see Figures 5 and 6).

5.2 Model Selection
The previous section gives an overview of the performance of

Azure and Amazon in terms of their capacity and universality.
However, although we observe that the additional models provided
by Azure significantly improve performance, model selection and
hyper-parameter tuning become new challenges.

From the user’s perspective, there is then a natural question:
Given a machine-learning task, which model should a user choose
(for good performance)? The answer depends on (1) the capacity
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of the models, (2) the time the user is willing to spend on parameter
tuning and training, and (3) the user’s quality tolerance level.

In the following, we study the trade-off between these factors.
Our goal is not to give a definitive conclusion, which is in general
impossible given the variety of machine-learning tasks and models.
Rather, by presenting the results observed in our study, we hope we
can give some insights into what is going on in reality to help users
come up with their own recipes.

5.2.1 Linear vs. Nonlinear Models
In Figure 2, we have incrementally noted the models we need to

include to improve the capacity of Azure (with respect to a given
universality). Clearly, we find that nonlinear classifiers (e.g., C-
BDT, C-NN, etc.) are the driving force that propels the improve-
ment. It is then an interesting question to investigate where the
improvement indeed comes from. We further compare the AUC of
the models over different datasets in Figure 3.

We observe that nonlinear models (e.g., C-BDT) can outperform
linear models (e.g., C-SVM) as the dataset size increases. (The x-
axes of Figures 3 and 4 represent datasets ordered by their training
sizes.) This is not surprising: Nonlinear models are more compli-
cated than linear models in terms of the size of hypothesis space.
However, nonlinear models are more likely to suffer from overfit-
ting on small datasets (e.g., the dataset D-SCH in Figure 3).

Figure 4 further presents a zoomed-in comparison between C-
BDT, the dominant nonlinear classifier, and the linear models C-
AP, C-BPM, C-SVM, and C-LR. The y-axis represents the differ-
ence in terms of AUC between a model and the best linear model.
For example, the best linear model on the dataset D-SCH is C-
BPM with an AUC of 0.92, whereas the best linear model on the
dataset D-EG is C-SVM with an AUC of 0.89. Linear models often
perform similarly regardless of dataset size: There is apparently a
hit-or-miss pattern for linear models; namely, either the actual hy-
pothesis falls into the linear space or it does not. As a result, there
is often no big difference in terms of prediction quality between
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linear models: If users believe that linear models are sufficient for
a learning task, they can focus on reducing the training time rather
than picking which model to use.

5.2.2 Training Time vs. Prediction Quality
As we have mentioned, there is an apparent trade-off between the

prediction quality of a model and the training time required for that
model. More sophisticated models usually have more knobs to tune
and therefore need more time for training. Given that nonlinear
models in general outperform linear models on large datasets, it is
worth further investigating the trade-off between their training time
and prediction quality.

We summarize the comparison result in Figures 5 and 6. Figure 5
presents the trade-off between the prediction quality and the total
training time on hyper-parameter tuning, whereas Figure 6 presents
the trade-off in the average sense (i.e., with respect to the average
time spent on training a model under a specific hyper-parameter
setting). For ease of exposition, we order the models by their train-
ing time along the x-axis. We also include linear models in our
comparison for completeness.

In each plot of Figures 5 and 6, the blue horizontal line represents
the AUC of the winning code and the red horizontal line represents
the AUC of (the logistic regression model provided by) Amazon,
whereas the scattered points present the AUC of Azure models.
We have noted that the choice of linear versus nonlinear models
can make a difference. However, one interesting phenomenon we
observe is that the choice within each category seems not so im-
portant; i.e., the prediction quality of different nonlinear models is
similar. Although this is understandable for linear models, it is a bit
surprising for nonlinear models. One reason for this is that most of
the nonlinear models provided by Azure are based on decision trees
(C-BDT, C-DJ, and C-DF). Moreover, more training time does not
always lead to better prediction quality. For example, in Figure 6,
the average training time of C-DJ is significantly longer than the
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Figure 5: Tradeoff between prediction quality (AUC) and total training time. The blue line represents the AUC of the winning code, and the
red line represents the AUC of logistic regression (C-LR) on Amazon.

Table 6: (a) AUC corresponding to the high tolerance regime of dif-
ferent Kaggle competitions. (b) A heat map that represents the ca-
pacity of different models on different datasets. Dark green repre-
sents low tolerance, light green represents middle tolerance, yellow
represents high tolerance and red regions are out of the tolerance
regimes we defined.

Dataset Winning AUC 10% AUC
D-SCH 0.91 0.88
D-EG 0.89 0.88 

8888D-VP 0.86 0.79
D-AEA 0.92 0.90

D-KDD2 
D-KDD1 0.67 0.62

D-SCH D-EG D-VP D-AEA D-KDD1 D-KDD2
C-AP
C-BPM
C-BDT
C-DF
C-DJ
C-NN
C-SVM
C-LR

(a) (b)

others over the dataset D-KDD1. (Note that the x-axis is at the log-
arithmic scale.) However, it is outperformed by even linear models
such as C-AP, and its prediction quality is very close to that of C-
BDT. Considering the average training time presented in Figure 6,
C-AP is the choice among linear models, whereas C-BDT is the
choice among nonlinear models.

5.2.3 Quality Tolerance Regime
So far, we have looked at the model selection problem from only

two of the three respects, i.e., the capacity of the models and the
training time they require. We now investigate the third respect:
the user’s quality tolerance. This is a more fundamental and subtle
point: A certain quality tolerance may not even be achievable for a
machine learning task given the current capacity of machine learn-
ing services. (For example, we have seen that neither Azure nor
Amazon can achieve even a quality tolerance of 30 on D-VP.)

To avoid oversimplifying the problem, we define the concept
of quality tolerance regime based on the capacity of the machine
learning services we currently observe:

• Low tolerance regime. Corresponds to the case when the quality
tolerance is below 1.23

• Middle tolerance regime. Corresponds to the case when the qual-
ity tolerance is between 1 and 5.
• High tolerance regime. Corresponds to the case when the quality
tolerance is between 5 and 10.

To give some sense of how well a model must perform to meet
the tolerance regimes, in Table 6(a), we present the AUC that a
model has to achieve to meet the high tolerance regime, the loosest
criterion in our definition, in different Kaggle competitions. This
is a way to measure the intensity of a competition: The smaller the
gap is between the winning AUC and the top 10% AUC, the more
intense the competition is. Some competitions are highly competi-
tive: the gap is merely 0.01 on D-EG.

Of course, one can change the thresholds in the above definition
and therefore shift the regimes to different regions of the tolerance
range (0, 100]. Based on our definition and Table 4, Azure can
meet the low tolerance regime for the datasets D-SCH and D-EG,
the middle tolerance regime for the datasets D-AEA and D-KDD1,
and the high tolerance regime for the dataset D-KDD2. In contrast,
Amazon only meets the high tolerance regime on the dataset D-
KDD1 but fails on the others.

To better understand the performance of Azure with respect to
different quality tolerance regimes, we further present in Table 6(b)
a “heat map” that indicates the quality tolerance levels met by dif-
ferent Azure models on different datasets (or, in terms of the ca-
pacity of models, the heat map represents model capacity across
different Kaggle competitions).

The dark green regions correspond to the low tolerance regime,
the light green regions correspond to the middle tolerance regime,
and the yellow regions correspond to the high tolerance regime.
The other regions are outside the tolerance regimes we defined. We

23That is, when users can only be satisfied by winning the Kaggle competition or being
ranked among the top 1%.
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Figure 6: Tradeoff between prediction quality (AUC) and average training time per parameter. The blue line represents the AUC of the
winning code and the red line represents the AUC of logistic regression (C-LR) on Amazon.

find that Azure actually only meets the low tolerance regime on
small datasets, where linear models work well. Azure can meet the
middle and high tolerance regimes on large datasets, thanks to the
inclusion of nonlinear models.

This is also a summary that covers many observations that we
have so far. In view of the Kaggle competitions (by reading the heat
map vertically), some are more challenging than the others. For ex-
ample, none of the models can meet even the high tolerance regime
on the dataset D-VP, and only C-BDT can meet the high tolerance
regime on the dataset D-KDD2. In view of the models (by reading
the heat map horizontally), there is not a one-size-fits-all solution:
No one can dominate the others across the datasets. Moreover,
there is apparently a separation between the “comfortable zones”
of the models: Linear models are more capable on small datasets,
whereas nonlinear models are more capable on large datasets.

5.3 Summary and Discussion
Given the previous analysis, there is an obvious trade-off be-

tween the efficiency and effectiveness of machine learning services
from a user’s perspective. The more alternative models a machine
learning service provides, the more likely it is that a better model
can be found for a particular machine learning task. However,
model selection becomes more challenging and users may spend
more time (and money) on finding the most effective model.

Meanwhile, we also find that there is a gap between the best
available model on machine learning services and the winning code
available on Kaggle for certain machine learning tasks. It is then
natural to ask the question of how to narrow the gap to further im-
prove machine learning services. Of course, there is no reason to
disbelieve that there is a possibility. For example, one can sim-
ply provide more models to increase the chance of finding a better
model, though this may make model selection even harder. It is
also not so clear which models should be included, given the trade-
off between the capacity of a model and the training time required
to tune the model.

Table 7: Gaps between Azure and Kaggle winning code (DWD is
shorthand for “distance weighted discrimination”).

Dataset Best Azure Winning Quality Gap Ranking Gap (%)
D-EG C-AP LR -0.01 -0.3 (No. 4 → 2)

D-SCH C-BPM DWD -0.01 0
D-KDD1 C-LR Ensemble 0.02 2.12
D-AEA C-BDT Ensemble 0.01 1.6

D-KDD2 C-BDT Ensemble 0.05 6.57
D-VP C-BDT NA 0.11 31.16

We investigated this question from a different viewpoint by look-
ing into the gap itself. Instead of asking how to make the gap nar-
rower, we ask why there is a gap.

Table 7 compares the best performing Azure model with the
winning code from Kaggle. Again, we separate small datasets (D-
EG and D-SCH), where linear models outperform nonlinear mod-
els, from large datasets, where nonlinear models are better. The
“Quality Gap” column presents the difference in AUC scores be-
tween the winning code and the Azure model, and the “Ranking
Gap” column shows the corresponding movement in rankings on
the Kaggle leader board. For example, on D-EG, the winning code
is actually slightly worse than C-AP from Azure, with a quality
gap of -0.01 and a ranking gap of -0.32%: The winning code is
ranked fourth (i.e., top 0.64%), whereas C-AP could be ranked sec-
ond (i.e., top 0.32%). The larger the quality gap and ranking gap
are, the more potential improvement there is. One prominent obser-
vation from Table 7 is that the winning code on the large datasets
leverages ensemble methods (details in Section 3.4), whereas the
best nonlinear models from Azure (C-BDT, C-DJ, C-DF) more or
less leverage ensemble methods as well. Therefore, it seems that
Azure is moving in the right direction by supporting more ensem-
ble methods, though it needs to further improve their performance.
Amazon may need more work towards that to incorporate ensem-
ble methods (as well as nonlinear models).24

24Very recently, Amazon launched a new machine learning service
called SageMaker [11]. We have further evaluated these models
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Table 8: Improvement on private AUC score attributed to feature engineering. All numbers are with hyperparameter tuning.

Dataset C-AP C-BPM C-BDT C-DF C-DJ C-LR C-NN C-SVM BestVsBest
D-SCH 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%) 0.00 (0.00%)
D-EG 0.03 (3.81%) 0.03 (3.36%) 0.02 (2.04%) 0.02 (2.33%) 0.02 (2.63%) 0.03 (3.82%) 0.03 (3.83%) 0.04 (4.48%) 0.03 (3.20%)
D-VP 0.02 (3.89%) 0.06 (9.75%) 0.07 (10.71%) 0.11 (17.64%) 0.12 (20.66%) 0.04 (5.41%) 0.08 (12.25%) 0.15 (27.24%) 0.07 (10.71%)
D-AEA 0.04 (5.14%) 0.07 (8.42%) 0.05 (5.73%) 0.04 (5.26%) 0.12 (15.31%) 0.03 (3.88%) 0.04 (4.46%) 0.04 (4.74%) 0.04 (5.03%)
D-KDD2 -0.01 (-1.31%) -0.04 (-8.08%) NA (NA) 0.05 (9.07%) 0.06 (11.80%) -0.02 (-3.06%) NA (NA) 0.03 (4.76%) 0.02 (3.63%)
D-KDD1 0.06 (10.60%) 0.09 (15.35%) NA (NA) 0.06 (10.86%) 0.10 (19.25%) 0.05 (8.64%) NA (NA) 0.10 (17.63%) 0.05 (8.64%)

Table 9: Improvement on private ranking attributed to feature engineering. All numbers are with hyperparameter tuning.

Dataset C-AP C-BPM C-BDT C-DF C-DJ C-LR C-NN C-SVM BestVsBest
D-SCH 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%) 0 (0.00%)
D-EG 386 (61.76%) 378 (60.48%) 320 (51.20%) 104 (16.64%) 97 (15.52%) 386 (61.76%) 384 (61.44%) 398 (63.68%) 372 (59.52%)
D-VP 59 (4.52%) 349 (26.72%) 432 (33.08%) 627 (48.01%) 569 (43.57%) 280 (21.44%) 527 (40.35%) 544 (41.65%) 432 (33.08%)
D-AEA 759 (44.99%) 838 (49.67%) 773 (45.82%) 742 (43.98%) 986 (58.45%) 665 (39.42%) 726 (43.03%) 468 (27.74%) 708 (41.97%)
D-KDD2 -62 (-13.14%) -85 (-18.01%) NA (NA) 244 (51.69%) 301 (63.77%) -121 (-25.64%) NA (NA) 157 (33.26%) 44 (9.32%)
D-KDD1 118 (25.00%) 289 (61.23%) NA (NA) 257 (54.45%) 348 (73.73%) 65 (13.77%) NA (NA) 343 (72.67%) 65 (13.77%)

6. FEATURE ENGINEERING
So far, our study has been focused on Kaggle competitions whose

winning codes are available. That is, the datasets we have discussed
consist of well-engineered features generated by winning codes.
In practice, feature engineering is a critical factor that can signifi-
cantly impact machine learning results. Unfortunately, feature en-
gineering is often more of an art than a science. To better under-
stand the impact of feature engineering on our results, we conduct
a comparative study using the datasets with only raw features.

6.1 Feature Engineering In Winning Code
We start by investigating in more detail the feature engineering

techniques explored by Kaggle winning codes. In general, the tech-
niques are pretty diverse, many of which rely on specific semantics
of the raw features. For example, in the dataset D-EG, the raw fea-
tures represent Web page contents (i.e., text) and the winning code
further constructs text-based features such as tf-idf scores of the
Web pages. However, we also identify some techniques that are
commonly used by multiple winning codes:
• (Feature Transformation) Most feature transformations per-
formed by winning codes are rather simple. Common techniques
include converting categorical features to numerical ones, standard-
izing feature representations such as converting dates to triples rep-
resenting all date, month, and year information, and so on.
• (Feature Aggregation) The most common, aggregated features
generated by winning codes are the counting features. That is,
for each raw-feature column in a dataset, they generate additional
features that represent the frequency of each distinct value in that
column. Another type of aggregated feature widely exploited by
winning codes is about statistic properties of raw-feature columns,
such as the max, min, mean, median, and standard deviation of a
column.
• (Feature Selection Using Random Forests) The most common
feature selection method leveraged by winning codes is using influ-
ence scores generated by random forests [30] to select the most in-
fluential features. This is not surprising, though, as random forests
are popular for feature ranking.
More advanced but less frequent feature engineering techniques
used by winning codes include using singular-value decomposition
(SVD), subsampling, fitting a (e.g., normal) distribution based on
training data, etc. We refer the readers to the full version of this
paper [32] for the complete details.

over our datasets in MLBench [32]. We find that SageMaker out-
performs Amazon significantly, due to the addition of new models.

6.2 Impact of Feature Engineering
As most of the winning code spends significant effort on feature

engineering, there is a clear gap from the typical way that people
use machine learning clouds in practice, where feature engineer-
ing may not be at the level achieved by the winning code. Conse-
quently, our previous results for the machine learning clouds may
be over-optimistic. In practice, neither Azure or Amazon provides
feature engineering functionality. We assess the impact of feature
engineering and make the case for a potentially promising research
direction of “declarative feature engineering on the cloud.”

We consider an extreme case where we do not perform feature
engineering, and ask the question: If we use raw features instead
of features constructed by the winning code, how will it impact the
performance of machine learning clouds? In Figures 8 and 9, we
present the improvement in terms of the AUC score and the ranking
on the private leader board by using the features from the winning
code versus using the raw features (without feature engineering).
Hyperparameter tuning was turned on for each run. A negative
value here indicates a drop in performance. Not surprisingly, in
most cases using well engineered features helps boost performance
significantly, though it is not always the case. For instance, for C-
LR on D-KDD2, using features from the winning code decreases
the AUC score by 0.03, and the corresponding ranking on the pri-
vate leader board drops by 129. The last columns in Figures 8 and 9
further show the improvement by the best model using engineered
features versus the best model using raw features. Even under this
best-versus-best comparison, the benefit of feature engineering is
significant.

We also should not be overly pessimistic by the results, though.
After all, in practice it is rare for people to completely give up fea-
ture engineering, given the intensive and extensive research on fea-
ture selection in the literature. Consequently, our comparison on
using only raw features should be understood as a worst-case study
for the performance of machine learning clouds. Meanwhile, it
is interesting to further explore the “gray areas” between the two
extremes that we have studied in terms of feature engineering: In-
stead of using either fine-tuned features or just raw features, how
will machine learning clouds perform when combined with an au-
tomatic feature learning procedure? There is apparently a broad
spectrum regarding the abundance of feature learning algorithms.
One challenge here is to decide appropriate feature learning proce-
dures for a given learning problem. Since this is orthogonal (but
complementary) to the current work, we leave it as one of the fu-
ture directions for exploration. Ideally, this should be integrated
into machine learning services as part of the declarative service,
therefore it might be a promising aspect for machine learning ser-
vice service providers to consider as well.
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Figure 7: (a) Capacity and universality: The multi-class case. (b)
Quality of different models: The multi-class case.

Table 10: Capacity of C-MLR from Azure and Amazon.

Dataset Azure (C-MLR) Amazon Winning
D-BBL (211) 1.42 47.39 0.47
D-MSM (321) 0.80 NA 0.31
D-HMR (377) 4.98 3.18 0.27

7. BEYOND BINARY CLASSIFICATION
We have conducted similar case studies for multiclass classifica-

tion and regression problems on Azure and Amazon. In this sec-
tion, we briefly summarize our observations and leave the details to
the full version of this paper [32].

7.1 Multi-Class Classification Competitions
Datasets and models. Using a protocol similar to that described
in Section 3.3, we obtained ten datasets harvested from multi-
class classification competitions on Kaggle, five with features ex-
tracted by winning codes whereas the other five with raw features.
Azure supports four classifiers, namely, C-MDF (multiclass deci-
sion forest), C-MDJ (multiclass decision jungle), C-MLR (multi-
class logistic regression), and C-MNN (multiclass neural network),
whereas Amazon only supports C-MLR. Again, Azure provides
more knobs for hyperparameter tuning — Amazon again automat-
ically tunes the learning rate for its C-MLR.
Capacity and universality. Figure 7(a) shows the capacity of
Azure and Amazon over all datasets with winning features (i.e.,
with universality of 3). Like the binary-classification case, Azure
exhibits a much better capacity than Amazon because of the addi-
tional models it supports and more opportunities for hyperparam-
eter tuning. (The capacity of Azure is 2 whereas the capacity of
Amazon is 52.) While both Azure and Amazon support C-MLR,
their performances differ dramatically as shown in Table 10. We
speculate this is due to hyperparameter tuning of C-MLR on Azure.
Quality of models. Figure 7(b) further compares the qualities of
the Azure models over different datasets. Unlike the binary clas-
sification competitions where we can directly compare the AUC
scores, different multiclass classification competitions use differ-
ent evaluation metrics such as accuracy and log loss. We there-
fore instead compare their rankings — this is one benefit of using
ranking as our performance measure as we have discussed in Sec-
tion 3.2.3. Interestingly, for the multiclass datasets MLBench in-
cludes, the (generalized) linear model C-MLR can outperform the
other nonlinear models such as C-MDF and C-MNN. Meanwhile,
the performance gap between Azure and the Kaggle winning codes
is once again due to the lack of ensemble methods (see [32]).

7.2 Regression Competitions
MLBench includes 13 datasets harvested from regression com-

petitions on Kaggle. Five of the datasets consist of winning fea-
tures, whereas the others contain raw features. Azure supports
seven models for regression problems, namely, C-BLR (Bayesian
linear regression), C-BDR (boosted decision tree regression), C-
DFR (decision forest regression), C-FFQ (fast forest quantile re-
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Figure 8: Capacity and universality: The regression case.

gression), C-LRR (linear regression), C-NNR (neural network re-
gression), and C-PR (Poisson regression). All models come with
knobs for hyperparameter tuning. In contrast, Amazon again only
supports C-LRR and automatically tunes its learning rate.

Figure 8 presents the capacity of Azure and Amazon over
all datasets as well as just the datasets D-LDP1, D-LDP2, and
D-LDP3. Although Azure outperforms Amazon in both cases,
both of them perform poorly when all datasets are involved (also
see [32]).

8. RELATED WORK
There has been research on benchmarking machine learning al-

gorithms and comparing their quality on various datasets [13, 16,
23]. Most of these efforts focus on benchmarking machine learning
algorithms on “raw datasets” without much feature engineering, a
key process for high-quality machine learning applications [22].
MLBench is different in the sense that it consists of best-effort
baselines for feature engineering and model selection. Another dif-
ference between our study and previous work is that, instead of
benchmarking all existing machine learning models, we focus on
those provided by existing machine learning services and try to un-
derstand whether the current abstraction is enough to support users
of these services.

Benchmarking cloud services and relational databases have been
an active research topic for decades. Famous benchmarks include
the Wisconsin benchmark [20] and TPC benchmarks [12]. There
are also benchmarks targeting clouds for different purposes, espe-
cially for data processing and management [18, 34]. Our work is
motivated by the success and impact of these benchmarks, and we
hope to establish the first benchmark for machine learning services.

9. CONCLUSION
In this paper, we presented MLBench, a dataset we constructed

by collecting winning code from Kaggle competitions. Unlike ex-
isting datasets, MLBench contains not only the raw features for a
machine learning task, but also those used by the winning teams of
Kaggle competitions. MLBench then enables comparing quality of
machine learning services against best-effort systems made by hu-
man experts, using novel measures such as capacity, universality,
and quality regime.

As an example use case, we further conducted an empirical study
on the performance of state-of-the-art declarative machine learning
services using MLBench. Our results demonstrate the performance
gap between machine learning services and Kaggle winning code.
Detailed investigation further reveals that lack of adopting ensem-
ble methods is one important reason.
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